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Foreword

The purpose of this report is to examine the problem

of scattering of electromagnetic waves by an open, perfectly

conducting surface , Specifically , to formulate the problem

as a boundary value problem, to convert the latter into a

problem in integral equations , and to show that it can have at

most one solution. In trying to reach these objectives we were

• guided by the methods employed to achieve the same ends for the

problem of scattering by a closed surface. In this latter

case there are two items of special concern: the types of

surfaces and the types of linear current densities induced on

these surfaces that would allow for a successful completion

of the aforementioned tasks. In the case of an open surface

these same items appear but in a more complicated form: in

the interior of the surface things are not any different from

• a closed surface ; near the edge, however , additional require—

ments must be imposed both on the surface and on the induced

linear current density . Though it is not immediately apparent

from reading this report, much of the time devoted to its

preparation was spent in finding the right class of open

surfaces and current densities for which the objectives could

be accomplished .

For convenience the report has been divided into two

parts. In Part II we deal with problem described above. In
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surface , of the quasi-stationary form of the integral

representations for the scattered fields obtained in Part II.

This part is essential in completing the proof that the

boundary value problem is equivalent to a problem in integral

equations. The apparent reversal in the order of the two

• parts is intentional , for it is in what we call Part I that

all the restrictions on the surface and some on the current

density come into play . The other possible arrangement,

i.e. making Part I an appendix of the main problem , would
• necessitate bringing in these restrictions at the beginning of

the report without any possible explanation . Again for

convenience, we have supplied each part with its own title,

abstract, and introduction .

I
I



PART I

The Behavior of Potentials with Singular Densities

Near the Edge of an Open Surface.

Abstract

This work deals with the behavior of a simple-layer

potential and its spatial derivatives near the edge of an

open surface . Types of open surfaces and density distributions ,

singular near the boundary of such surfaces, are determined

for which these potentials satisfy a finiteness of energy

condition . The resulting estimates are useful in establishing

integral representations for the electromagnetic f ields

scattered by a perfectly conducting open surface .r

I ,
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A. Introduction.

It has long been recognized (Jones, 1964; Sommerfeld ,

1964) that the conditions required for scattering problems

involving closed surfaces to be well—posed are not sufficient

in case the surfaces are open. In fact, it has been shown

• (Jones, 1964) that in order that the open surface scattering

problem have at most one solution (if at all), then one more

condition is required of the scattered fields, be they acoustic

or electromagnetic. This condition requires that the fields

behave in a specified way in the vicinity of the edge of the

open surface and is usually referred to as an edge condition .

Though a condition of this type is dictated purely from the

• mathematics of the problem , it has also a physical meaning :

It is intimately connected to what is known as the finiteness

of energy condition which requires that, in a volume devoid

• of sources, the energy content should go to zero with the

volume.

In this work we will examine whether a simple-layer

‘

~ ~~

• potential and its first derivatives satisfy such an edge or

energy condition. This question came about from studying the

problem of finding integral representations for the electro-

magnetic fields scattered by a perfectly conducting open

surface . Once found , these representations, which are in

effect the Stratton-Chu formulas , must be tested as to whether
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• they satisfy an edge condition . It can be shown that this can

be accomplished by examining a simple—layer potential whose

density , defined on the open surface, is allowed to increase

beyond bound (though in a specified way) in the approach to

the boundary of the surface . Specifically, we will show that

:J 
the line integral of the square of the potential , and also of

its spatial derivatives , around a circle centered on the

boundary of the open surface and lying on a plane perpendicular

to the boundary exhibit a certain order behavior with respect

to the radius of the circle. In Section B we will introduce the

types of open surfaces to be considered . In Section C we will

describe the class of allowable densities and will state the

problem and the results. In Sections D through G we will prove

the results stated in Section C, while in Section H we will

offer some concluding remarks. Some detailed computations will

be left for Appendices ~ through D.

Before closing we mention that problems of this type have

“I been studied in great detail in two dimensions for Cauchy-type

integrals whose density is defined on an open curve

(Muskhelishvili , 1953; Cakhov, 1966). As above, the density is

allowed to grow beyond bound near the end-points of the curve .

Using these results , Hayashi (1973) was able to obtain order

relations near the end-points of the curve for the scattered

fields for the two-dimensional Dirichiet problem for the

Helmholtz equation. Some criticism of his results is offered

in Section H.
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B. Description of the surface.

In this section we will introduce the type of surface over

which the density of the simple layer potential will be defined.

In order to do so we need a number of definitions , some of

which we will adopt from Carmo (1976).

Definition 1. A surface S in R3 is a smooth surface if

at each point M of S there exists a unique tangent plane

(and, hence , a unique normal line) and a positive number d ,

the same for all points M of 5, such that if we erect a

rectangular coordinate system with origin at M and the

z—axis along the normal at M, then the portion of S

intercepted by the sphere x2+y2+z2 < d~ can be represented

in the form

z = F(x,y) , (x,y) ~ A ’ ; F ( O , O ) = 
B F ( O ~~Q ) ~F ( O , O )  

= 0 , (1)

where F is an one-to—one function with continuous second

partials in A’ , and where A’  is the closed region of the

xy-plane which is the projection onto the xy-plane of the

portion of S intercepted by the sphere .

With respect to this definition we note that the one-to-one

property of F guarantees that S is not self-intersecting ,

which in turn guarantees the uniqueness of the tangent plane

at each point of S. Moreover , since there are two choices of

1L~~~~~~~~~~_ _ 
_ _ _ _  _ _ _ _ _ _
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a unit normal on z = F(x,y), we choose the one whose

• z-component points in the same direction as the positive

z—axis.

Definition 2. A surface S in R3 is a smooth open surface

if H
(a) S is a smooth surface

(b) for any two points in R3 which do not belong to

S there exists at least one continuous curve

• connecting them which does not have any points in

common with S.

(a) S has as its boundary a simple closed and

rectifiable curve C.

Definition 3. A smooth surface S is an orientable surface

if it is possible to cover it with a family of coordinate

neighborhoods as in (1) in such a way that if a point M of

S belongs to two neighborhoods of this family, then the change

of coordinates has positive Jacobian at M.

This definition says in effect that , at each point in the

common part of two overlapping neighborhoods , the normals

• for each neighborhood point in the same direction .

Definition 4. A surface S in R3 is a bounded surface if

there exists a sphere that contains S in its interior.

Definition 5. A surface s in is a connected surface H
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if any two of its points can be connected by a continuous

curve on S.

Definition 6. A surface S in R3 is a simply connected

surface if it is connected and if every simple closed curve

• - on S can be continuously deformed into a point of S.

The type of surface we are interested in is a bounded ,

simply connected , orientable , smooth open surface with some

additional conditions on its boundary as well as the portion

• of the surface near the boundary. The condition of boundedness

together with that of smoothness result in the surface having

area (cf.Carmo , 1976) . The condition of connectedness is not

really necessary . The actual surface may be composed of a

(finite) number of disjoint surfaces. Each such surface again

could be multiply connected provided that the “holes” in it are

not composed of a single point in R3 , and that the curves

bounding these “holes” as well as the surface ilear them

• 
• obey the conditions described below . As it will become clear

later on , however , an extension of the ensuing results to such

surfaces is immediate , and for this reason , as well as to avoid

cumbersome notations , we restrict ourselves to a simply connected

surface .

We now turn to the description of the boundary as well as

of the surface near it. From this point on we call

the surface 5, its boundary C, and its closure S (S = SUC) .

A 
_ _
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• The properties of the previous paragraph apply now to ~

and not just S. Thus , if M is a point of C, we have

the representation (1) for the portion of S inside the

sphere of radius d with center at M. We require next that

at each point of C there exists a well—defined tangent

line which we identify with the x-axis of the local coordinate

system . We take the x-axis to be positively oriented with

respect to the z-axis , so that the y-axis is pointed towards

S. With respect to this coordinate system , we impose the

following condition on 5:

For all points M of C there exist fixed positive

numbers A , a’ , and b’ such that

IF(x ,y)—F(O ,y) < ~~~~~~~~ J x J < a ’ < d, 0 < y < b’ < d ( 2 )

where ~ > > 0 and may depend on the point M of C.

This condition can be given a geometric interpretation .

The unit normal vector for the portion of the surface under

consideration is given by

~ -F x—F y+z
• • x yn =  

_ _ _ _ _ _

/l+F 2 +F 2 .

x y

Since from (2) F~~(0 ,y) = 0 , 0 < y < b’ < d , we have that on

the yz—plane , the unit normal is
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)
/l±F~ 2 (0 ,y )

But this is precisely the unit normal vector to the two-

dimensional curve z = F(0,y) , 0 < y < b ’ < d , provided its

arclength is increasing with y. Thus, Eq. (2) requires

that the three-dimensional curve z = F(O ,y) behaves as a

two-dimensional curve in 0 < y < b’ < d , which in turn says

that the curve has torsion zero , (or, equivalently, its

osculating plane is the yz-plane) . This lack of torsion can

be loosely restated in terms of the surface itself as follows :

At x = ~~~~. the surface is not allowed to twist about the

• curve z = F ( 0 , y ) ,  0 < y < b’  < d. k
With respect to the boundary C of S, we require that

• it is twice continuously differentiable with respect to its

arclength and that the portion of C intercepted by the sphere

of radius d and center a point M of C has a projection

• on the xy-plane described by the pair of equations.

- • x f(s), y = g ( s ) , — s 0 < s < s1 ( 3 )

where s represents arclength measured from the origin and

increasing in the direction of the positive x—axis. The functions

f and g possess continuous second derivatives , bounded t h i r d

ones , and satisfy the conditions , 

~~~~~~--- --~~~~~~ - • • - - —-~~~~- •~~~~ ~ • -
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f(0) = g ( 0 )  = 0 , f ’  ( 0 )  = 1, g ’ ( 0) = 0 , f’ (s)2+g ’ (~ )2 = 1. ( 4 )

We note here that the curve described in (3) does not intersect

itself since the point (x,y) is in the domain of F.

We call the conditions described by Eqs . (2) , (3 ) , and
(4) the open surface edge conditions and we make the following

definition ,

Definition 7. A surface S in R3 is a regular open surface

if it is a bounded , simply connected , orientable , smooth open

surface , and if it satisfies the open surface edge conditions

(2) - (4).

This is the type of surface we will be considering from now on.

C. Description of the problem.

The objective here is to study the behavior of a simple—

layer potential and its first derivatives near the boundary of

a regular open surface . The potential is of the form

U (P’ — 
h ( M )  dS ( 5 )/ — 

i s 
R ( P , M)

where R(P,M) is the Euclidean distance between the points P

and M , M ~ S, P ~ ~~~~, and h is the density function defined

on S. As is well known this type of potential has been studied

in great detail for S a closed Lyapunov surface , and h

H~lder—continuous on it (Gunter , 1967; Kellogg, 1953) . In
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the present case the surface is open and the density will be

allowed to grow beyond bound in the approach to the boundary .

In order to define the density function precisely, we need to

introduce a new curvilinear system of coordinates.

With center a point N0 of C we erect rectangular

coordinates , as described in the previous section , and we focus

on the portion of A’ contained in the rectangle xl < a ’,

o < y < b ’ . The unit tangent vector at a point of the plane

curve (3) is

= f ’ ( s ) x  + g ’ ( s ) y ,  ( 6 )

while the unit normal vector is

= = —g ’ (s)~ + f’ (s)ç’. (7)

The position vector then to a point (x,y) of A’ is

xf(s) + pg (s) + i~0 (s)p, p > 0 ( 8 )

• from which we get the transformation

x = f ( s ) — g ’ ( s ) p ,  y = g ( s ) + f ’ ( s ) p  ( 9 )

which will be one-to-one provided the Jacobian

_______  = 1. — K(s) (10)
~ (s ,p)

is not zero. Here , K(s) is the curvature of the curve in 

- • -  - -~~~~- - - • —~~~~~~~~~~~•- ~~~~
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(3), i.e.

V 
K (S) = f’(s)g”(s) — g’(s)f”(s). (11)

• By the assumption on f and g,  K is bounded and we can

choose p s u f f i c i en t l y  small so that the Jacobian is

strict ly positive . We assume that this is the case for the

curvi l inear rectangle

A = { (s , p )  : s i  < a , 0 < p < b } C[-a ’ , a ’]  x [O ,b ’ ] .  ( 12)

The densi ty funct ion h is now defined as follows :

• 

V 
it is a real-valued function defined over S and satisf y ing

the following two conditions

a) In every closed and connected subset ~~~
‘ of 5 ,

bounded away from C , the funct ion h is continuous .

b) In A of (12)  , i . e . ,  nea r and on the boundary , the

funct ion h is of the form

h(M) = , 0 < a < 1, a + ~ > 1, (x , y )  c A (13)

where p is the index introduced in ( 2 )  and c is a

function defined on A and sat isfy ing the Lipschi tz

condition
I

f o ( M 1) — o ( M
2
) I < A IM 1-M2 1 , M1, M 2 c A . (14)

Definition 8. A ‘real-valued ~‘inction h defined over a

-~~~~ ~~~~~~~~~~~ --— --~~ •~~~— ~~~~~-- - -~~~~~~~~~~ -~~~~-- -  —~~--~~~ - • --~~~~~~ -~~~~~ •~~~-



~~~~~-- , -~~~~~~_-w-~- —-‘“-- .~~~~~- .— .- ~- -V _ _ _

_____ - ________- - 
V 

— • •—----~ 
V -

-11- 

_regular open surface ~ is said to be a ~~~u1ar density

function for the surface if it satisfies conditions (a) and

(b ) abo ve.

As mentioned at the beginning of this section , the

point P in (5) is near the boundary C of S and is chosen

as follows: Given a point M0 of C, we make it the origin

of the rectangular coordinate system described above. We take

the point P to be a point on the yz-plane with coordinates

(y’ ,z’) and such that 0 < (y’2+z ’2)1’2 = p ’ < b. With this

-• point we also associate polar coordinates (p ’ ,4’) with

= p ’ cos q ’ , z’ = p ’ sin 4 ’ , p ’ > 0 , 0 < 4 ’  < 2r r . (15)

In the succeeding sections we will examine the behavior of

the line integral of the square of U(P) as well as the square

of its spatial derivatives on the circle y ’2+z ’2 = p ’2 in the

limit as p ’ -
~ 0. The results can be summarized in the following

two theorems.

Theorem 1: Let ~ S L J C  be a regular open surface (Def.7

and h a regular density function (Def. 8) defined on S.

Let U(P) be the simple-layer potential defined in (5), where

P = (O ,y ’ ,z’), M = (x,y , z) with the coordinate system as

in the preceeding paragraph . Let also V

U 1 ( P )  = J xh(M) dS.
S R(P ,M) 

~~ -•--- - - :---- - -• ~~~~~~~~~~~~~~~~~~ - -
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Then,
L J ( P )  = 0(1), t31 ( P )  = 0(1), p ’ -

~ 0, 0 < p ’  < 2ir .

Theorem 2: Let S and h be as in Theorem 1 and define V

U2(P) = -J (y-y ’)h()~~ 
~~~~~~ , U3 (P) = _ J (z-z ’)h()~~ dS.

S R(P,M) V s R(P ,M)

Then ,

0 < a < 1
r 2~rJ p ’ l u . ( P ) I d q ’  = p ’ -

~
- 0

V 0
O(p ’(log p ’) ) ,  a = 1

where j = 2 ,3

We remark here that the estimates in Theorem 1 are stronger

than those of Theorem 2. Several attempts were made to obtain

V estimates for U2 and U3 like those for U and U1, but

were not successful. In each case the bounds would depend on

4 the angle ~~~
‘ on a way that would make them non-square-

integrable with respect to c~ ’ .

D. The behavior of the simple-layer

We split the integral in (5) into two integrals by writing

U(P) = J dS + J R~~
M
~) as , (16)
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where S(A) is that neighborhood of S about M0 whose

projection on the xy-plane is the region 1 s t  < a, 0 < p < b.

The second of these integrals is continuous in a neighborhood

of the point M0, and its limit as p ’ 0 is equal to the V

analagous integral obtained when P is replaced by M0. The

first integral can be written as

J h ( M )  
dS = J G(x~Y) /l+F 2+F 2 dx dy

S(A) R(P,M) A (P,M) ~ y

= J /~+~ +F ( l — K ( s ) p ) d s d p ,  (17)
V A p aR(P,M) y

where R(P,M) = /x2÷(y_y I) 2÷(z_z u ) 2 and a*(s,p) =

o(x(S ,p),y(s ,p)). We then have

J R ~~~ ~~ < M’J 
dsdp 

, r ’ = /x2+ (y_y~~
2 (18)

S ( A )  ‘ A p 
C
~r t

where M’ = max {IG *(s,p) (l—K (s)p) ~~~~~~~~~ : (s,p) ~ A l . If

in (18) we expand x and y about s = 0, we find that

(see Appendix A),

= 
1 ( l + O ( c ’ ) ) ,  c ’ -

~
- 0~~, ( 19)

V 

- 
provided that b < c ’/6 ()Kt +1) < 1, a < E ’/2(l+M1) 

< 1,

< 1, with K = K ( O )  , M1 = 6M-4-M2, and where M is

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

j
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the maximum of ~~
“ I~ I g ” I~ I c”’ I~ and I g ” ’  I .  We can then

write

J h (M)~~~5 < M(1+O(e ’)) J P
a
~~dSdP 

, c ’ 0~~. ( 2 0 )
S(A) P

~
M) -- A /s2 ÷ ( p _ I y h I ) 2

This last integral exists and is of 0(1) as y ’ -
~ 0, (see

Appendix C). We thus have ,

U(P) = 0(1), p ’ -‘- 0 , 0 < q ’  < 2-ri (21)

and , hence,
ç 2ri 2J ~~

‘ 0(P) I d~~’ = O ( p ’)  , p ’ -* 0. ( 2 2 )
0

E. The behavior of U 1( P) .

In this section we deal with the integral V

V 

U1(P) = -J xh(M) 

~ 
ds. (23)

S R(P,M)

As with eq. (16), this integral can be split into two integrals ,

the second of which is well behaved. For the first one we write ,

J xh(M) dS = J [o ( x,y)sec — a(0,~ y ’~~)sec 
1

3 dxdy +
S(A) R(P ,M) A R(P ,M)

+ ci (O ,~ y ’l)sec rp ’ J ~P 
~ 
dxdy , (24)

V A R(P ,M)

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where , 
V

sec ~ = ~~~~~
2÷F~

2 I (x ,y) , sec ~~~
‘ = /1+F 2+F~

2 J (0 , ly ’ ~~
), (25)

V i.e. IL-i is the angle the z-axis makes with the normal to the

surface at (x,y) while r~’ is the corresponding angle with

the normal at ( O jy ’I ). Since F is twice continuously

differentiable we have that

f sec ~ - sec 
~
‘) < ~~~~~~~~~~~~~~~~~~~ ; (26)

similar ly,  since a satisfies (14)

V 

~o(x ,y) - o ( O ,~~y ’~~)l < ~~~~~~~~~~~~~ y ’j ) 2 . (27)

Combining the two equations , we obtain

Ia (x,y)sec ~ 
- a(0,ly ’I)sec ~‘ f  < c /x2÷(y_ty I I ) 2 , (28)

c a constant . We then have that the first integral on the

right-hand side of (24) is, in absolute value , less or equal

to

r ct— l/2 , 2 r a— i
ci 

I x I p  ~‘x + i Y - I Y
/

I )  dxdy < ci 
p dxdy (29)

(x2+(y—y ’) ) 
— 

~A /x2+ y _ I y ~ 1 )
2

V This last integral is of the type encountered in (20) and is

- V 

of 0(1) as y ’ -* 0. 

.------.~~~~~~~~~~ V
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For the remaining integral in (24) we write

J XP dxdy = J xp a—l 1 l~~~~ - ~~~dxdy + J XP dxdy , (30)
A R ( P ,M) A [R(P ,M) R J A R

where ,

R = /x2 + ( y _ y I ) 2 + ( F ( o , y ) _ z I ) 2 
. (31)

For the expression in the brackets we write

R ( P , M) 3 
- 

R3 [ R ( P ,M )  
- 

R]{R(P ,~~)
2 + R ( P

1

N ) R  
+ . (32)

For the first term of this expression we have

1 
— 

1 R2—R(P ,M) 2 
(3•flR ( P ,M) R R ( P ,M ) R [ R ( P,M)+RJ ‘

and

a2 
— R ( P ,M) 2 = [ F (0 ,y)-z ’j 2 — [F(x ,y)-z ’} 2

= [ F ( O , y ) — F ( x ,y) J [F ( O , y ) — z ’ + F (x , y ) — z ’ l

so tha t

1R 2 - R ( P ,M) 2 1 ~ IF (x,y)—F (0,y) I ( R + R ( P ,M ) )

and , by ( 3 3 )

1 
- 

1 
< ~~~(x , y ) - F ( O , y)  I (34)R ( P , M) R — R ( P , M ) R

Combining this result with (2), we have for (32) 
V 

~~~~~ - - - -~~~~--V- -- -.-- -•V -- - - ~~~~~~~~~~~~~~ ~~~~~~ _ _
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1 1 A Ix I 1~~ 1 + 1 < 3AI x~~~~
R(P,M)3 

— 

a
3 ~ R ( P , M ) R R ( P ,M) 2 R ( P ,M ) R  R — 

r 
V

where r ’ is given by (19). The first integral on the right-

hand side of (30) is, in absolute value , less than or equal to

3AJ 1 x 1
2 a—l 

dxdy < 3AJ 
P
a l dXdY 

2— ( 36 )
A r’ 

— 

A 
[/x

2÷(y_ Iy 1~~)2] 
p 

H

The last integral exists and is bounded for  all values of y ’

provided a + p > 1, (see Appendix C).

In order to evaluate the remaining integral in (30) we

V resort to the coordinate s (s ,p) introduced in (9) . We thus

write ,

‘A 

XP dxdy = 

‘A 

p
a_l ( f ( s ) g~~(s) p) 

(l-K (s)p)dsdp. (37)

Expanding the integrand about s = 0 (see Appendix B ) ,  we have

a— i

J dxdy = ( l + O ( c ’ )  )

A R

ct—i — 1 - ~~2p [(l—Kp)s + ~~
- as I

I 2 2 3’2 (l—K (S) p)dsdp , c ’-~-0~~. (38)
1A [s +(p—y) ’) +(F(O ,p)-z ’) 2J 

/ 
V

From (11)

V 

K(s) = K ( 0 )  + [f’(s4)g ’ ” (s4)—g ’(s4)f’”(s 4)Js , 0 < s4 
< s, (39)

so that
I

— V V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -V
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a—i
I 

~ 
dxdy = (1+0(c ’)) -

-

~A R

‘Ij~: J~ a [s 2+ (P-y ’ ) 2±
~

F(0 ,P)-Z ’ ) 2
]
3
~
2 

dsd p+ O ( l ) ~~.

Since the integral in the brackets is zero, we have that

a—i

J ~ 
dxdy = 0 (1) , p ’ -+ 0, 0 <  ~~~

‘ < 2ff . (40)
A R

Collecting the results from (29) , (36) , and ( 4 0 )  , we

have that

V1
(P) = 0(1), p ’ -

~ 0 , 0 < p ’  < 2~
- (41) V

and , consequently,

J0
p 1 l v l P I

2a~~ = 0(p ’ ) ,  p ’ 0. (42)

V 
At this point we have concluded the proof of Theorem 1.

In the remaining two sections we will prove Theorem 2.

F. The behavior of U (P).2

In this section we deal with the integral

U2 (P) = - J (y -y ’)h(M) 
dS. (43)

S R(P ,M)

- - -
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V • 
As with (16), this integral can be split into two integrals,

the second of which is well behaved. For the first one we 
V

write , V

J (y—y ’ ) h ( M )  dS =

S(A) R(P ,M) 3

- , a—i
= J [ o ( x ,y )sec ~ - a ( O , ly ’ I ) s e c  ~~~ y ~~ 

~ 
dxdy +

A a(P,M)

+ o ( O ,Iy ’ ) sec 
~~~~

‘ J (y_y I )p ~~~1[ 1 
— 

~~1dxdy +
A LR(P ,M) R J

+ a(0,Iy ’I)sec r~’ j (y’-y dxdy. (44)
A R

The f i r s t  two integrals  on the righthand side can be treated

in the same way as in the previous section . For the last

integral we have , according to Appendix B and the last section ,

a—l
dxdy =

A R

V I rb ra , ct— i
= ( l + O ( c 1 ) ) ~~J j ~p-y ~ 

(1_ K p ) p  
2 3/2 dsdp + 0 ( 1)  =

~ 0 —a [s ± (p—y ’ )  + ( F ( 0 ,p)—z ’ )  I

I rb , a ’l
V 

= (l+0 (~~’ ) ) ~~2aJ 
(p y  )(l_K p)p d p+ 0 ( l )

1 0 (p_y J ) 2+ ( F ( 0 ,p )_ z~~)
21/a

2+(p_y I) 2+ ( F ( 0 ,p) z~~)
Z

(45)

If we let M*=max~ IF (o ,p) I = 0 < p < b } , we then have

(p—y ’ ) 2 + (F(0,p)-z ’)2 < (b+~y ’j) 2 + (M + Iz ’~~~
2. 

-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
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From this inequality together with the requirement that

b + ly ’ I  < —
~~~ , M~~+~~z ’~ < —

~~~ , (46)

we have that

(p—y ’) 2 + ( F ( 0 ,p )—z ’ ) 2 
< a~ ( 4 7 )

V which allows us to expand the radical in ( 4 5 )  into a power series

to obtain

f , c t l  I rb , a 1

J y dxdy = (l+0(c ’))~~2j 
)~~~ 

2 dp + 0 ( l )
A a 1 0 (p—y ’ )  + (F ( 0,p)— z ’)

(48)

We obse rve that  the last integral in (48) can be wr i t t en  as

V 
- rb , ct—i ‘b c~—lj (p—y 1— K p ) p  

2 dp = Re i ( l — K p )  dp ( 4 9 )
V 0 (p—y ’) +(F(O ,p)— z ’) o 

T

where ,

T = p + i F ( 0 , p ) ,  0 < p < h , and w = y ’ +iz ’ . ( 5 0 )

To study the complex integral  in ( 4 9 )  we introduce polar

coordinates
‘ 6p 

- 

p + iF(0 ,p) = re1 , 6 = 0(r) (51)

wi th __________

r = /2+F(o p)2 > p. ( 5 2 )

From Appendix D we also have

i t  
- 

-~~~ -~~~~~~ -~~~~~~~ V •~~~_V~~~~~~~~~~~~~~~~~~V~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ . - ~~~- • • -  -—----V _ _
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V dr > ~~- dp, r < —a- p . (53)
2 -

~~~~~~~~~

Taking into consideration that K~~p < 1, we have that

~b p~~
’(l~~ p) dp <1

b p
ct_l

(~ +~ K [p~ dp < 8 1

rb rct
~~dr

T W  —J 0 re lO _p I e
1P I ~~ ~o re

1O _p l
~~~~ I

(54)

where rb r(b) .

From the discussion up to now we see that V

r 2

IV 2(P) 
2 

< C
i{J 

b r~~
1dr 

] 

+

V 
0 ire p e  I

- j  + 0(1) 
~ 

b r~~
ldr 

+ 0(1), p ’ 0, (55)
0 Ire — p e  I

where C1 is a constant. Since the aim is to estimate the V

integral

~~
‘ V2 (P) [

2dm ’ (56)

- 
0

we start by estimating the expression

r 2

I(p ’) = j 2
~’ ~ 

b 
r
ct_ ldr d~~’ , ( 5 7 )

0 0 /r2+p 1 2_ 2rp t cos(4~’— 0(r))

which we can write as 



Ii

1 
f
r~ rb

1 ( p ’ )  = J P ’d~~’ t J  J0 J~~o 0

(58)
V 

(rq ) c t l drd q

~~
2
~~p u 2 2rp~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ cos(4 ’-~i(q ))

We consider the in tegra tion on the (r , q,~~’) space . The integrand

is not defined on the surface obtained by revolving the curve

r = p ’ , 0 = ~~~
‘ abou t the ~‘—axis ; otherwise it is continuous

V on ( O ,rb
] x (O ? rb ] 

x [0 ,2-it) . Hence , the integrand is measurable V

(cf. sobolev , 1964) . We show below that the iterated integral

with the order of integration reversed exists. By the Tonelli-

• Hobson theorem (cf. Apostol , 19 7 4 ) ,  it is th en equal to the

orig inal  in tegra l .  We have that

r
b rb

I(p ’)  < p ’ J (rq ) c t l drdq
0 ~O

(59)

1/2
[1271 d~~’ 1

271 
d~~’I I  2 “ I ‘

~ 2L~o r +ç ’ ’-
~—2r p ’ cos (~~’—0 (r)) ~O q’ 4- p ’ — 2rp ’ cos (V~~’—0 (q))

where , above , we used the Cauchy-Schwarz inequality. If we make

the subs t i tut ion y = ~~~
‘ — 0 we see that the integrands in the

last two in tegrals are periodic in ‘
~ with period 271 . We can

then wri te ,

b 
rb -1

1(p ’) < p ’ J J (rq)
1
~ drdq

‘ 0 0

[p 271 
___  

d : I 2~ 1’ 11/2 
60

2+ , 2 2 , ~~~~~~~~~~O q~~~~ ’~~— 2 ~~~ ’ cos~~~’



_________ _____  ~~~~~~~~~~~~~~~
±-

~~~~~~~
--‘-.

Ii
— 2 3 —

The integrals with respect to ~~~
‘ can be evaluated

by using the following integral representation for Legendre

f u nctions of the second kind (Magnus et al., 1966 , p. 186)

L L ‘1 1

Q~~~ 
(z) = i(2ir )~~~ ( z ’—l ) ~ - (z—cos t)~~~dt. (61)— ½

Since (Magnus et a l . ,  1966 , p. 172)

~~~~~~~~~ 

(z) = i (~~)½ (z
2_l)~~

¼ , (62)

we have that

r VlT 
,_ V

I (z—cos t)~~~dt = ~~( z 2_ l ) 2 . ( 63) V

Fr om (63) we can compute the integra ls  in ( 60 )

1
271 d~~’ = 

i 
r 

d~ ’ 
=

2 ‘ r~ ’ ’ 2 2r + I ‘~~—2r p ’ cos ~~~
‘ 

~~~0 
— cos V~~~ ’

______ 
71 

— 
271 

(64)

~ ~~~~~~~~ i ½ 
—

rp I , —l j
L 2r 1. j

Equat ion  ( 60) then becomes

2

1(p 1) < 

r b r b 
~~~ rfl

1Tt_l drd cl = 271p ’ 
[J

rb r 1dr~~
0 0 /1 2 , 2 2 _ , 2 0 ir —p ’ 2

P I C I p ( 6 5 )

_ _ _  V
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- 

- We make the change of variables r = p ’~ to obtain for (65)

1(p ’ )  < 271p 1 2a_l[J ~
a_i

~~~ ]2 . (66)
V 

0 I~ lfl

In evaluat ing ( 6 6 )  we consider the cases 0 < a < 1

V 
and a = 1 separately. For 0 < a < 1,

V 

f

rb/P~ 
~
ct

2

l
d~~ < J~ 

~a;
ld~~ ( 6 7 )

0 I~ — i~~ 0 I~ ~~ 
2

I
V 

and the last integral  exists  as an improper integral. In fact ,

through simple transformations it can be shown that

~~ 

~
ct
~
l
d~~ = ~ 

J

1
t
_½

l_t~~
/2

~~ dt + ~ J t  (l-t) 2
~~ dt

0 ~~_ l I 2

(6 8 )

V 

= ~[B[~~. ~J+ B(.~. ~i~J] .
where B stands for the Beta function . We then have that

1(p ’)  < 1L p t 2a_l[B
[
~~, ~]+B {~~ 

i_~J]
2 

0 < a < 1. (69)

For the case ct = 1 we compute

rb / I  
= 
j

i ~~~~ 
+ (b

~~~ ~~ =

k 
— I L 2  0 /l_~

2 1 /~V
2_ l

= + ioq~~~~[i+~~
i~~4~i] <~~~ + i + log {~#]; (70)

_ _ _ _ _ _ _ _  _  V
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so that by substitution into (66) we obtain -

1( p ’) < 271P ’{l + + log 
r
b]2 a = 1 (71)

To estimate the second term in (56) , i.e. the one

resulting from the second term in (55), we use the Cau~.~1y-

Schwarz inequality and the results for 1(p ’); thus ,

r ct —i 
_ _ _ _ _ _

I d~ ’p ’ I 
r r < /2ir p ’I(p ’) <

~0 “2 2Vr +p ’ —2rp ’ cos ~~~
‘

ir. [B I~-~ ~~)+ B
{~~~I 

L~JJ p t ct , 0 < a < i 
( 72 )

2~ P ’jl + + log
{~~ }]~ a = 1.

Finally , 2a—l0(p ’ ) ,  0 < a < l

J 7 1p h v
2
~~~~

1
2

~~~

1 = rb 12 
, p ’ 0. (73)

O P ’~~l0~~~TJ , c t = l

G. The behavior of U3 (P).

In this section we examine the integral

_ _ _ _ _
U

3
(P) -j 

(z-z ’)h(M) dS. (74)
5 R ( P ,M )

V - 
As with (16) , this integral can be split into two integrals ,

the second of which is well-behaved . For the first one we

write , 

- - V -V - V -V -V~V - ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — -~~~~~~~~ V V
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V 

j 
(z-z ’)h(M)dS J (a(x,y)sec~ -a(0, Iy ’ I)sec ~~h ] (

2_z t 
dxdy +

S(A) R(P,M) A R(P ,M)

+a (O, ly ’ I)sec~~
’ 
~
j P

a i (Z_Z~ ) I - ~~J dxdY+j 
P
ct 1

~
z_z I)

~~XaY}. 

V

I A [R(P ,M) R j  A R

( 7 5 )

The first two integrals on the right-hand side can be handled

as in the previous two sections. For the third one we write

j p
c t l

~ z z 1) 
dxdy = 

‘A 

F ( x ,y)-F(O ,y) dxdy + 
J

F(o~~Y~~
_
~~

1 
dxdy .

By ( 2 )  , the first of the integrals on the right hand side is,

in absolute value , less than or equal to

r c t —l  i-I-p c t —i
V AJ ~ I x I dxdy < Aj 

p dxdy 
. ( 7 7 )

A R3 
— 

A ~~~~~~~~~~~~~~~~~~~

The last integral is of the same type as the one in (36) . For

the last integral in (76) we write , using Appendix  B ,

F’O - ‘ r pc t l [F(o ,p)_ z I + ~~
- ~s

2]

~ 

l ‘

~~~~

‘

~~~

‘

~~ 
~ dxdy = (l+0 (€)) I 2 2 2 3 2

R ~ A [s +(p-y ’ )  + ( F ( 0,p)-z ’ )

(l—v (s)p)dsd p = (1+0(t))

b a  , a-i )
V j I [F ( 0 ,p)-z I (l-Kp)p 

2 3’2 dsdp+O(l) ~~~. (78)

-

V U i — a  [s +(p—y ’ )  + ( F ( 0 ,ç-)— z ’)  I / I

_ _  - - - - - - — VV~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - - ~~~~~-~~~~~~~~ 

j
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As with (45)-(48) , we have -

J F(O ,y)-z’ dxdy = (l+O (~~))~~2~ 
[F(0 ,P

~
_z h ] (1_KP )p

~~~~ p÷o(l)l. H
A p 

~ 
0 (p—y ’ )  + ( F ( 0 ,p)— z ’ )  J

(79)
We observe now that

J

b [ F ( 0,p)— z ’) (l KP)P
a l  

dp = —Im 
j

b p ct~ l (1_ p) d p , ( 8 0 )
0 (p-y ’) +(F(0 ,p)-z ’) 0 T-W

V and , hence , all the iesults of the previous section can be

used here. The sought-after bound is the same as in (73), i.e.

271 2 Q (~~ 2a—l ) , 0 < a < 1
V J ~~~

‘ IV 3
( P )  I d~ ’ = rb 2 p ’ 0. (81)

0 o[P[1og [~
_
~}] J , a =

H. Conclusion.

The main results of this work are Theorems 1 and 2 of

Section C. In formulating these theorems at the outset we

were certain as to the class of density functions we wanted

to have included (Def. 8) but not as to the class of open

surfaces. Condition (2) on the surface as well as the condition

a + p > 1 in (14) were not anticipated and were made necessary

by the manner we proved these theorems . It will be interesting

to try to construct alternate proofs which do not employ these

two conditions . Another point for investigation , which we also

brought up in Section C, is whether order relations with

respect to p ’ can be ohtained for U2 and 03 which would

A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~ V V .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i
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V lead to the same result as in Theorem 2. With respect to

this las t poin t, we w i t h  to mention that the proof Hayashi

(1973) gave for the two—dimensional case is not satisfactory .

The reasons for it are outlined below :

V Consider a simple , open , and bounded arc L on the

yz-piane and make one of the end points the center of a coor-

dina te system as in ( 15) wi th ( s a y )  the y ’—axis tangent to 
a

L at the end—po int. Consider the function u(p ’ ,~~’ )  which is

the combination of a simple- and a doubie-ii~’er potential with
V

t densi ties def ined on l~. Hayashi shows that u = 0(1) 
V

as p ’ -‘- 0 . For 3u/~ p ’ he , however , reasons as fol lows : V

V “If we assume that  ~u/~p ’ O(p~
ct
), p ’ ~ 0, then a > -1

is necessary in order that u is bounded when p ’ -* 0.

This statement is not wrong but on the other hand it is not a

proof that  ~u/~p ’ = 0(p ’
1
~) , p ’ -- 0 , as claimed in his  H

Theorem A .2. Wha t has been proven is that if u ( c ’ )  = 0(1)

and ~u/~)p ’ = 0 ( p ~U), then a > — 1 .  We w is h  to make the po in t

h o t a  t h a t  even though h i s  conclusion is incorrect, th i s  in no way

a f f e c t s  the results of his paper for , as in our  c~~~i s e, he is

• interested in an i nt eg ra l  of the -type

-
. 2Tr

- -
V J o

vanishing in the limit as p ’ -+ 0 and , we believe , though

we have not proven , t h at  this is indeed the case .

-~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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V

Appendix A. Proof of Equation (20). 
-

We start with Equation (9) which we repeat here for

convenience :

x = f(s)—g ’ (s) , y = g(s)+f’(s) . (A.l) 
V

Without loss of generality let s > 0. Expanding x and y

about s = 0, we find H

x = ( l — K ( 0 )  p ) s  + ~~[ f ”  (s 1) — g ”’  
~~~~ 

p ] s 2 ,

y = p + ~ [g”(s2)+f”’ (s2)p]s
2, (A.2)

where 0 < s1 
< s, 0 < s2 

< s. We then have

x2+(y—y ’)2 = s2+(p_y I) 2+ _ 2  ~~2~ 2)52 +

~ (p -y ’) s 2 + ( l - K p )~~s
3 

+ ~ (a
2+~

2)s4, (A.3)

where K = K ( O ) ,  and

= a( s 1, p ) = f” (s1)-g”’ (s1)p, ~ = ~ (s 2 , p ) = g ” (s
2
)+f’ ’ (s21p)p.

(A.4)

Letting B stand for s2+ (p—y ’)2 while A for the rest of

the right—hand side of (A.3), we can write

~ j~~2 Kp+ K2p2 I + I ~~I I s I + I l~~K p l k I I s 2 + 1
(

2
+B

2
)

2 (A . 5 )

- - ~
V
~~~~~~~~~~~~~~~~~~~~~~~ :V~~~ V~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~-~~-----• - -~~~~~~~~~~ -—~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Assuming that f and g have second and third derivatives

bounded by the constant M , we get

I & I < ( l + p ) ,  I~~ < M(1+p) , (A.6)

so that V

~ I-2 ÷~H I~~I p+M i+p I s l + l l- ~ p IM l+p si + ~ M
2 (1+ p ) 2 I s 1

2

< (2 +~ p) I~~ J p + 2 M ( l + p )  J5 i+ IK !PM (l+p) P s i + ~ M 2 ( l + p ) 2 j s~~
2 I
(A.7)

-
V Fur ther  requir ing that 

~ 
< 1, I~ I~ < 1, s~ < 1, we get

for (A.7)

~ <3 IK Ip + 4M PS H 2M I S I+M 3
1 s 1 = 3 i ~~I p+ 6MIsI+M

2
I s I 3 P~~l p+M1 I s I ,

(A . 8 )
2 ‘where M

1 
= 6M+M - Letting 0 < E < 1 be given , we have that

V 
I A/B I < c provided that

~ 6(I~~I÷n 
< 1, ~~ 

< 2 l
~~~i 

< ‘I < 
~~~. ~~~~~~~~~~

-• We now examine the expression

1 
= 

1 
= i + 1 

- 1 . ( A . i O )
/~ /1+A/B /~~~ V’i+A/B

For 0 < A/B < c we have



--V .—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V - ‘ - -3 3—

1 < 1 —  1

~ /l+A/B

V 
while for —E < ~~

- < 0

_ _ _  
— 1 <  1

— i .  V

H /i+A/B

Since, for ~~~~~~ 
< ~

u r n  
1 

_ _ _ _ _ _  — 1 < , (A.li)
I e~~0+ ~ V’1+A7B 2

we have from (A.lO)

1 
= [1+0(E)], C 0~ . (A.l2)

-
~~~~~~~ v~~~ v~

Without loss of generality we assume that the conditions

in (A.9) for (A.l2) to hold are satisfied in the curvi l inear

rectangle A of (12).

II



- -,-V -V-~~~~~~--- -,--,— -“.-— ~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—34— 

)

Appendix B. The expression for l/R3 in terms of the

V coordinates (s,p) .

We wish to rewrite 1/a of (31) in terms of the coordinates

(s,p). Let

V u = F (0 , y )  = F(0,g(s)+pf’(s)) (B.l)

Since

V -
~~~~~~ = g ’ ( O ) + p f ” ( O )  = 0

we have

V 

u = F ( 0 ,p) + ~2 = F ( O ,p) + -
~~

- ys 2 , 0 < s
3 

< s

S=S
3 (B.2)

V where

= 
~ (s~~,p) 

= 
B F ( O ,y )

Bs S=S 3

2B F 
~~~~~~~~~~~~~ (g ’ (s

3
) +p f ”  (s

3
) )  2

By S S 3

+ 
BF~~~,y )  (g ” (5

3
) +pf ” ’ (s

3
)) . (B. 3)

s=s3

From (8.2) we have

[ F ( O , y ) — z ’ 1
2 

= [F ( 0,p)— z ’1
2 

+ y [ F ( 0 ,p)-z ’]s
2 

+ ~~~ y2s4 ,

so that

I ~i
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)

x2 + (y -y ’) 2 + ( F ( O ,y)-z ’ ) 2 
= B’ + A ’ , ( B . 4 )

where

B’ = B + [F(0 ,p)-z ’] 2 ( B . 5 )

A’  = A + ~~[ F ( O , p ) - z ’) s 2 + ~ ~
2
s~ ( B . 6 )

and A and B have the meaning given to them in Appendix A.

V I Then ,

< -2Kp+Kp 2 I +( I~~I + I y I ) i s l + i l -~ p I I a I I s j  + ~~~~~~~~~~~~~~

and by (A.5) and (A.8)

< 3 I K I P  + M~~~sj  + I d sI  + ~ ~2~~2 (B .7 )

From (B.3) with all derivatives bounded by M ,

Iii < M 3 ( l + p ) 2 +M 2 ( l + p )  < (M ~ +M 2 ) ( l + p ) 2 < (M+1) 3 ( l +p ) 2 < 4 ( M + l ) 3

V 
(B.8)

~~ 
tha t  for ( B . 7 )  we have

< 3 1 K m  + [M i + 4 ( M + l ) 3+ 4 ( M + l ) 6
] l s I  = 3Hp + M2 I s i .

(3. 9)

Choosing p and s according to (A.9) with substituted

by M2 ,  we have that A’/B ’ < C. 

— - - - - —
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We now wr ite

1 1 
_ _ _ _  

1
= 

( B ’ -4-A’) 3”2 
= 

B ’ 3”2 I
l + 

A’ 3/2 
- 1 . B.10

L [l+~
_i-1 V

A’For 0 < 
~~

—
~
- < c , we have

1 11 - 

{i+~ J
3/2 - _ _ _ _ _ _ _

V wh ile , for -s < 
~~~

-
~
- < 0 ,

1 — 1 <  1 
— 1 .

{i+~~~]

3
~
’2 (l_E )3/

’2

Since , for A ’ / B ’ I  < C ,

V 

lim 1 
3 2 

— 1 < 3/2 , ( B . l l )

a 

c~~0~ {l+~~~} 

/

we have from (B.lO)

a3 = 

B~~~~
2 

[1+0 ( s ) ] ,  s 0~ (B. 12 )

VV IT _ _ ~
- - —V - -V 
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Ap2endix C. Computation of the integrals in Equations (20)

I and (36).

V V -The integral in (20) is a special case (11=1) of the one

in (3 6 ) - As with (18) , the in tegra l  in ( 36 ) can be converted

I into the fo l lowing  in tegral in the (s ,p) plane:

V 
r a l  rbrap dsdp 

— 
p dsdp 

=

A 
{/~

2~~(~~~p~~I p 2) 

- 

0 -a 
1~~~ 2 ÷ ( ~~_ p ~~~u 1 ) 2J

I r I y ’ i  a-i ~a _______________V = 2
~ J ~ d~~~J 2— +

0 0 
(~~~

2
+( p t j ) 2] 

p

V 

b a 
_ _ _ _ _ _

V 

J i y ~ 1
p ct

~~
ldp J 0 

[/~
2~~(~ ty ’ ) 2 ]j  

=

- rl  raI , ct ct— i ds2~y I  n d n j  2— 
+

0 0 
~/ ~ + p ’  1

2
(l fl )2) 

~

a-i ~a ds
- + q d n j  , (C.l)

1 0 ~~~~~~~~~~~~~~~~~~~~~~~ 

1

2
( n l) 2J  

~~

where , above, we made the change of variables p = y ’ I n .  L e t t i n g

a 
also s = y ’ ( 1 —n )  ~ and ~ = Iy ’ ( r i — i )  ~ in the f i r s t  and

second integrals , respectively, we obtain
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1 p ~~~dsd~ ________ =

A 2- 

F

- - f p a /Iy ’ ( 1 -n )L . 1 1  I f— i l— — l2 y r~ (l—r ~) d~ ‘ +

I/ i+~2J ~
~b/Iy ’ ct- i p-i r a / I y ’! ( n - i )

+ I ~~ (r~— i ) dri I - ( C . 2 )Jl 
~o ‘ 

/ ) i  ~~ I
J

We now dis tinguish  two cases.

Case 1: 0 < p < p < i .

With 0 < n < 1 we have t h a t

1a/jy ’I (l-n ) 
d~ 

1a/Iy ’I (l-~~) a — 
-

J o ~ 
,, • 2 ) ~~~~P — J 0 / 

—

~~% H j I

- 
io~~

[p y
1 ( 1 - n)  

~~~~~~~~~~ p 2~~i~~~~2 
J 

=

= iog
[
~~~_ r~~~~~~~~~ V~~~V.J + lo~~[i +~~~l + 

_ _ _ _

< io~~[.--- -

~~~~~-
] 

+ log {1 +~~/i + {
~~

]

2\ J
. (C . 3)

S i m i l a r l y , for 1 < n < b/Iy ’ i ,

V - _ _ _
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a/~y ’ I (r~—l) d / 
V 

r •~~2~ 
I

-: [~~~~J
2_ P < log~~~~~-~~~~-1~ I + lOg I +~~ 1 + 

-

~~~~~~ ~CI 4
We note here that, since b > y ’ an d because ot  ( 4 f f )  , the

V argument of the first logarithm in each of the last two

equations is greater than one.

I 
Substituting (C.3) and (C.4) in (C.2) we obtain

‘A 
{/5

2
+(p ly i I ) 2J 

< 2~ y ’ J ct+P_l{J
l
n

i (i_n )~~~~log{jy~ (l jdn

+ J~’~
’ p 

~~~~~~
_ 1  

(~ - l)~~~’ log 

~ I ( n _ l ) }~~~}

+ log~ l +~~~l:~~~}2] I : i I ~~~~1{ J
1

n a (i~ n)~~~
1
dn +

+ I n (n - l )~~ dri . (C.5) V

J l

We now assume that a+p > 1. For the first integral on the

ri ght (call  i t  1
~~~ 

we wr i te

- 1~ 1I 
P a+p—2 I a I ct+p—2 I aI

i 
< j n  iog~-p-~-j-p-—jdn 

+ 

~½ 
~~~~~~ ( l_ ~~) J dfl =

= 
(½) a+ U 2 

{lo~~[~~~~p ) 
+ a+~ -l] 

(C.6)

_
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For the second integral , call it 12,

12 ~ J~
/ I Y ’ I ( n _ l ) a+ P_ 2 

iog [1y , j ( f l _ l ) } d T l  =

= 
(b~~~~~~~~~~~~~ [1.o~~[~~~~~I~~} 

+ +‘~ ] ( C . 7 )

The third integral is the Beta—function B(a ,p) , while for the

fourth integral , 1
41 

V

I:~ ’ I ( n - i )  2
dn = (C 8)

Eq uation (C. 5) then becomes ,

‘A 2 

p
ct_ ldsd p 

2-p 
2(½ )~~

+
~
_2

Iy I i a+P~~ifiog{j
2a

1] 
+ +

s +(p— Iy )

f_ v -

+ 
2 ( b - I y ’ I ) ~~~~~~ [log [b p J + a+~-iJ 

+

+ 2 log{l +yi+ [~~]2’] [B(a p) ly ’ ~~~~~ + 
( b _ ! Y ~~I ) ~~~~~ i], (C.9)

V an expression which exists for all values of y ’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Case 2: 1 < p < 2

With-

p = l + ~~ , v > o , (C.10)

equation (C.2) becomes -

V a— l

I A ~/52+( t , i ) 2)
2
~~ 

=

2~y ’ I a 
~ f n

ct_ l ( l_ n ) v dn 
ja/jy ’ I (1-ri d~ +

V 
V 

1 0 0 [/i+~~2) ~

j
b/ I y ’ I 

n
ct

~~
l (n 1) V dn 

ja/IY~ I ( r i- i )  
d~~~

V 

1 0 
(/i+~ 2J 

l V  —

< 2~~y ’ 1
ct+V 

{ J f l
ct_ l (l n ) v dn j a/ l y ’ ~(1-n) ~~~ 

+

1b/Iy ’ I a-i ~ 
1a/~y ’ I (n - l )

I 
-~ + 

~ n ( r i — i )  dr-1 1—v =

= 
~~~Iy ’ i

ct 
{j

1 a_ i~ + j~~ 
m

ri~~l
dn } = 

2a~ b
ct 

( C . l l )

We note that for p > 2 the original integral is well-behaved . 

_ _ _  VV -~~~~~~~~~~~~ V_ V~~~~~~~•~~~
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Appendix D: Proof of the inequalities in Equation (53) . 
V

For the curve C defined by (50) as

C = = p+iF(0 ,p) = 0 < p < b}

we define the position vector ~ (p) by means of (51) :

r (p )  = pp+F (0 ,p)z = r-(cos 0 ~ + sir-i S ~z), ( D . i )

where ~ and ~ denote unit vectors in the p and z directions ,

respectively. We can then write for the tangent vector 
V

c1~ = (~~+F’ z )dp = (cos~~p+sin~ z)  / 1+F,2 dp = (cos~~~+sinçz)ds (D.2)

where s deno tes arcleng th along C , and

cos ~p = 
____  

, sin i4i = —
~~

---—--- , F’ ~~~~~~~~~~~~~~~~~~~~~~ . (D .3 )

/ 1+F’ 2 ~~~~~~~

On the other hand ,

p+FF ’ p + F ’F  -dr = — dp = ds = (cosf3 cosi~ + sinS sin~~) d s

+ ~~ ‘ 
2 (D. 4)

For 0 < p b and b sufficiently small we can have

- -  V -V-- V.- -- -- - -
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cos 8 > 4 , jsin e I  < 
~~

- 

• 

(D.5) 

I

since C is a Lyapunov curve (cf. G~ünter , 1967). The same

statement can be made about the angle -
~

- which is the angie

the tangent to C at a point makes with the p-axis or , V

equivalently, the normal makes with the z—axis. We then have , 
V 

-

dr > (cosO cos~p — sin IeIsin l~~l )ci s > (~~I . ~~~-~~ - - ~~ - • ~Jds = 
~~

- ds

(D.6)

or 

dr > ds > dp. (D.7)

To prove the second of (53) we apply the mean value theorem

to the function F:

r = /p
2+F(o ,p) 2 = p / i+ (F~~~ (0 ,p

1
) ) 2 

= ~~~~~~~~~~~ -— -  < p , (D.8)
1 3

where 0 < p
1 

< p.

~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— V.—-—- ~~~~~~~~~ V ~~~~~~~~~~~~~~~ V .



~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ --

t

-
I

V

V PART II

The Formulation of the Problem of Scattering of Electromagnetic

Waves by an Open , Perfectly Conducting Surface .

‘-I

V

Abstract

The problem of scattering of electromagnetic waves by an

open , perfectly conducting surface is formulated as a boundary

value problem . It is shown that for certain types of open

surfaces as well as induced linear current densities the boundary

value problem is equivalent to a problem in integral equations

of the first kind , and that , moreover , it can have at most one

solution .
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A. Introduction

One of the mos t prominent problems of electromagnetic

scattering theory is that of scattering of time—harmonic waves

by a perfect conductor which occupies a finite reg ion of

space and is bounded by a closed surface S. Mathematically,

this problem is a boundary value problem stated in terms of

Maxwell ’ s equations, radiation conditions , boundary values

V of the tangential  component of the electr ic  f ie ld  on the surface

S, and continuity properties of the scattered fields in space

and on the surface. One way of study ing this problem , i . e .

answering questions on the existence , uniqueness , and properties

of solutions, is to convert it to a problem in integral equa-

tions where the unknown function is the linear current density

on the surface S. This conversion can be accomplished provided

the surface and the current density possess certain mathematical

properties (cf . MUller , 1969)

A problem very similar to the above but possessing one

additional feature is that of scattering of electromagnetic

waves by an open , perfectly conducting surface S. The distinctive

fea tu re  is the very fact that the surface is open. As pointed

• out in Hem s and Silver ( 1955)  , it has been known for some time

that the conditions imposed on the closed surface problem

described above are not sufficient in guaranteeing the unique—

ness of the solution of the open surface problem , and that, in order

to have uniqueness , additional ones are needed. Those conditions

_ _ _ _ _ _ _  - V - -- -- V - — - V— ~~ - - — - -—--- -— V-- —--- -V -- -~~~~~~ V-
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vary from author to author (cf. Hem s & Silver , 1955 ; Jones

196 4 )  but , ultimately, al l  of them have to do wi th the

f behavior of the scattered fields near the edge of the open sur-

face an d , in effect , demand th at no sources of e lec t romagnet ic

waves are induced on the edge.

V Most of the works  ment ioned in the last two references

deal wi th pla ne sur faces  (or , equivalently, w i t h  ape rt ures in

perfectly conducting plane screens) , and for the most part aim

oni~’ at obtaining order relations for the scattered fields near

the edge of the open surface , quite often ~it t- he expe nse o’~

mathematical  ri gor. In the present work W ?  propose to formulate

the problem of sca t te r ing of e l e c t r o m a g n e t i c  waves by an open ,

per fec t ly  conduct ing sur face as a bound ary valu e prob lem , then

convert it to a problem in integral equations , and f in a l l y

prove that it can have at most one solution. In Section B we

present the class of open surfaces that we will consider , some

coordinates systems and no tat ion , as w iil as a brief i .  ~ie w  of

the basic definitions and theorems of vector analysis. In

Section C we define the boundary vaiue roblem , ~.e. present a l l

the conditions that the scattered electromagnetic fields must

sat isf y. Besides the usua l  ones requir’d of closed surfaces ,

as descr ibed above , t h e s e  c o n d i t i o n s  i n c l u d e  s t a t e m e n t s  on the

behav ior  of the sca tter ed f i e~ d s as we l l  as of the induced curren t

dens i ty  near th~ edge of th  - surf-o- - . The sca ttered f i e l d s  are

required to satisfy an energy cnndition n I-i r the edac

--- V 
_ _  —— -- --V.-—---—-V.--—--- - ----V
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which requires that the energy enclosed in a finite region of

space is finite and that it vanishes with the volume of the

region. Th~ induced current density is required to have a normal

component to the edge which achieves ~ f i n i t e  l imit  at the

edge , while its component parallel to the edge is allowed to

V grow beyond bound in the approach to the edge but in a prescribed

- V way. The current density is also required to have first partial

derivatives which , near the edge , behave in the manner of its corn-

ponent  paral le l  to the ed ge. In Section D we assess the physical

V 

impl icat ions  of the requirements  on the scat tered f i e lds  and

current density near the ed ge.

In ~octions B and F we prove the equivalence theorem ,
i.e. that the boundary value problem of Section C is equivalent

to a problem in integral  equations , while in Section G we prove F
the uniqueness theorem , i.e. that the problem can have at most

one solution . In Section H we offer some concluding remarks , and

in Appendices A , B, and C some detai led computat ions .

B. Preliminary considerations

In th i s  section we wi l l  introduce the sca t te r ing surface ,

two coordi nate systems associated wi th  it , some no ta t ion , as well

as define the basic operations of vector analysis.

The surface under consideration is a perfectly conducting

surface S bounded by a curve C. We denote by S the closure

_ _
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of S( S  = S (,JC)  and we require that S is a regular  open

surface . The definition , properties, and local description

of such a surface are given in Part I, Section B , and for  this

reason we do not repeat them here . In order to reach the

• objectives of this paper we will have to use this surface in V

conjunction with the integral theorems of vector analysis. To

this  end we need to paramet rize the curve C wi th  respect to its

arclength and to also introduce two coordinate  systems.

From an a rb i t rary  point M of C we measure arc iength ,

s ’ , along C and we have the following parametric representation

for the curve with respect to an arbitrary rectangular coordinate

system xyz :

x = f ( s ’ ) ,  y = q(s ’ ) ,  z = h ( s ’), 0 < s ’ < L , (1)

where L is the length of C. Ue note that because of the

d e f i n i t i o n  of C in Part  I, Section B , the fu nctions ~~~~, g,

and h are twice cont inuous ly  d i f f e r e n t i a b l e  in s ’ ; moreove r ,

f ’ 2+g ’ 2+h’2 = 1. The unit tangent vector to C is then given by

,
~~~~~~~~~~ — ,

~~~~~~~~~~- 
I

t = f(s ’) x+g(s ’ )  y + h ( s ’ ) z . ( 2 )

— Li
The unit norma l vector to S is now chosen so that it is

positiv+~ly oriented with respect to t. This can be done since

~ is orien tab i e by definition . With respec t to the coordinates

~ 

--V. - -- Vj
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of (1 . 1) the unit n3rmal vector is chosen to be

V 

A A A

A 
-F
~
x_F y+z

0 = —  (3)

/l+F 2+F 2x y

i.e. we agree that the local z—axis is positively oriented with

respect to t. For points M of C , we call n of (~~~~~) the

un it normal vec tor on C. If we al so defin e

= >~ t ( 4 )  
V

then the triple (~i ,-~,?) is a positive t r iple of orthonormai

vectors at each point of C. We no te that  the vectors t and

t lie on the plane tangent to S at the point of C under

considerat ion.

The remain ing  coordinate system is a polar sys tem ( p ’ ,-~~),

p ’ > 0, 0 < ~~~~
‘ < 2-n . It  is erected on the plane of the vectors

and i~ with the pole at the origin of this plane , and the

• angle ~~~~‘ measured from ~ to n.  If  is the posit ion

vector to a point of C , and if ~~~
‘ is the position vector on

the i-n plane , then the equa tion

= xx +yy +zz = 
~~~~~~~~ 

( 5 )

(1) The Roman numeral one (I) ref - - rs to Part I of this work .

-~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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defines a transformation of points (s’ ,p ’ ,~~’) to points

(x , y , z)  . The Jacobian of this transformation is

j  = ~~~~~
_
,
_ . ~~ -~~T-~~- x ~~~~~~~~ = p ’ [l_ ~~’~~’ ~~~ (6)

~~~

- ds j

The continuity of the second derivatives of f, g, and h

guarantees  the boundedn ess of I dt/ds ’ I  wh ich in turn guaran tees

that , for  p ’ suff icient ly small , the Jacobian is positive

-
‘ 

and the transformation one-to—one .

At this point we have completed the discussion of the

coordinates systems that will be employed below . Before moving

to the subject  of vector ana lys i s  we introduce some notat ion th at

will be used in the following section . We denote by S
÷ the s ide

of S facing in the direction of the normal , and by S_ the

other side . If f is a function defined in a re gion conta ining

S, we denote by ~~ (f) its limit as its argument approaches

S from S÷ (S_ ) . Finally, we denote by C
~ 

the closed curve

which is the intersection of S with the cylinder

II
0 < S ’ < L , p ’ = c > 0, 0 < ~~~

‘ < 2-n , (7)

where we take r small enouoh so that there is an one—to—one

correspondence bet-~-ioen points of C€ and points of C. Due to the

smoothness of S, C~ poss ’sses a tangent vector t which we

take positively oriented with respect to the normal. If M
c

is a point . of CE such that ~-1 ~ C , as t - 0, then

t ( M  ) -

V C

V - V — - 
----V. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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We conclude this section by explain ing the sense in which

- 
V the basic operations of vector analysis are to be understood .

The ideas that follow have been taken from MUller (1969) who

presents them in his book in great detail so that we will

• present here only what is absolutely necessary for our work .

• V To rio so we assume familiarity with the definition of a -~eguiar

surface  and a closed regular  surface  (Kel logg,  1953; MUller ,

1969). A regular region will be a compact point set in R3

bounded by a closed regular  su r face .

Definition 1: V A  sequence of regular regions G
v 

is said to

converge to a point 
~~ 

if for every c > 0 there exists a

number N(s) such that all G with v > N(c) are entirely
V —

within the region 
~~~~ 

< c.

Definition 2: Let ~ (~ ) be continuous in the nei ghborhood of

the point r 0 . Denote by I I the volume of the regular V

reg ion G
~ 

and by F
~ 

= , its boundary . If , for  each

sequence G
~ 

converging to 
~~~~~~~~ 

the limit

u r n  I n~ vdF
G - ~~ I I G  I I
v 0 V v

exists  and is unique , then we set

V v = 1 im —-i----—- n. vdF ,
G~~ r

0 I I G ~ I ~~~F~~~1

where n is the unit normal  to F
~ 

. We call V v  the

divergence of v at r0. 
V 

-~~~~~~ --- -~~~~—-- V -----Vrn— —-- - -~~~~~~~~ - 
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Definition 3: With the notation and conditions of Definition 2,

if the limit

1 r A

lim - I nxv dFV 

G - ~~ H G  I IV 0 V V

exists and is unique for each sequence G converging to

then we set

• 1 1 -
~~V x v = i im÷ nxvdF

G -*r I H  I IV 0 V V

We call Vx~ the curl of at

These de f i n it i o n s  d i f f e r  from the usual  ones in terms of
the operator

V x — + y — + z —

in that they do not require ~ to have f i rs t pa r t i a l  der iva t ives
at 

~~~~~~~
. It can be shown , however , that if ~ has cont inuous

f i r s t  part ia ls  in the nei ghborhood of 
~~~~~~~~ 

then the two

definitions are equivalent (MUller , 1969 ) .  From the def in i tions
above we have the followin g two theorems (MUller , 1969).

Theorem 1: Let be continuous in the regular region C.

Let V~~ be con t inuous  in each subregion ly in g en t i r e ly  in G.

If the integral

V I v . ãv

V V. - V  _



V 

exists , then

- 
V 

I 
n v  dF = V v  dv ,

V where F = 3G .

V 

Theorem 2: Let S be a surface  bou nded by the curve C so

that  S = SU C  is a re gular  open sur face . Let ~ and Vx~

be con t inuous  in a region that contains C. Then

V I -- (• V.
~

I n~ V~ v dS I t~v ds ’
V I C

These two theorems are the well-known divergence and

Stokes ’ theorems , r e spec t ive ly .  I t  must be noted that they

do not require differentiability of the vector v. Besides these

theorems we will need the surface divergence theorem and for

this reason we introduce the following definitions

Definition 4 : A seque nce of regular  open surfaces

= S~~ U C~ is said to converge to a point 
~~ 

if for  every

c > 0 there exists a number N(c) such that all S with
V

v > N(c) are entirely within the region 1~~~j t
0 1 < c .

Definition 5 : Let ~~~ be continuous in the neighborhood of

the point 
~~~~~~~

. Deno te by I I~ V I I the surface area of the

I regular open surface S
V
. If , for  each sequence 5

V 
converging

- 
to 

~~~~~~~~ 

the limi t

_ _ _ _ _ _ _  

_ __ _ __ _ __ _ __ __ _ _ _  

V V ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ ~~~~~~~~~ - . -~~~~~~~~~~ -- -  

- V
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1im~ — I ~~~v ds ’
S -*r I I s I I  1 c

V 0 V V

exists and is un ique , then we set

-~~ - 1 f A

V ,~.v = —1im~ 
— i v  ds

S -fr I I s I I ~~cV U  V V

and we call V
0
•v the surface divergence of v at r

0
.

With this definition we have the following surface divergence

theorem (MUller , 1969)

Theorem 3: Let and V
0~~ 

be cont inuous on the regular  open

sur face  ~ = S U C. Then ,

~ I J V
0~~ 

dS = T~~~ ds ’

We note here that in definition 5 as well as in theorems 2 and 3

the condi tion s on the s ur face can be relaxed (cf . MUller , 1969).

We close this section with the definition of the gradient of V

a scalar f u n c t i o n .

V 
Def in i t i on  6 : With the nota tion of Def i n i t i o n  2 , if the scalar

function U(r) is continuous in the neighborhood of the point

and if

u r n  —~~—-— I nUdF
V 

G -
~~~~~ I IC I- V 0 V V
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exists and is unique , then we set 
-

VU = lirn~ -

~~

----—- f n UdF ,
G - ~r 

G 
~Fv 0 V

I

and we call VU the gradient of U at 
~~~~~~~

V 
C The open sur face  problem.

In this section we presen t in mathematical  form the

problem of scattering of electromagnetic waves by a perfec t ly

conducting regular open surface S = s~J C. Before doing so

we introduce a definition that we will need below . In Part I, V

Section C , we defined a class of functions that we called

regular density functions . We now restrict this class to the

following. V

Definition 7. A real-valued function g defined over .a regular

open surface ~ is said to be an H—regular density function for

the surface if it satisfies Eq. (1.14) and the following condition:

In every closed and connected subset ~~~~
‘ of 5, bounded

away from C , the function g is Holder-continuous , i.e. there

exist real numbers B and ~ such that

Ig (M1)-g(M 2)l < B I M 1-M 2 1
8 , 0 < ~ < 1 ,

V where B does not depend on the position of M1 
and M2 in

5’, but may depend on the proximity of ~~~~
‘ to the boundary

C of S.



- 
~~~~~ V . V V V

The open surface  problem can now be stated as follows :

We wish to find vector-functions ~ and I~ which are defined

f

in R 3 -C , are continuous in R 3-~~, also continuous to the

V surface  S from S~ and S_ , and sat isf y the following

conditions

( i )  Maxwell ’ s equations

+ + + -~~ -* - -  -,- - -  3 —VxE(R) = ikZH(R) , VXH(R) = — i k Y E ( R ) , R c (R —5) (8)

where Z and Y are the free—space impedance and admittance ,

respectively, so that

z = = /p
0
/E

0 
, 

4

with the permeability and C
O the permittivity of free

space . Equations (8) are also required to hold in the approach

to 5 from S
÷ and S

(ii) The Silver-Muller—Wilcox radiation conditions

~
A 

1E + Z R x H = o ~ — , H - Y R X E = o — , R - * oo (10)R R

uniformly in the non-radial directions . Here , R = RR , with R

the uni t vector in the direction of

( i i i)  The edge condi t ions

( a )  For M c C and wi th  respect to the polar coordinate

syst  of Sect ion B 

--~~~~~- --~~~~~ --- -~~~~~~~~~ -—
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= O(p ’2~~~~
’
~~) f ~~~~~~~~~~~~ = Q ( ~~ I2 ( a~~~ )

) a > ~

(11)

where the order is uniform with respect to M c C ,

and where the asterisk denotes the complex conjugate

of the function it is attached to.

(b) On a family of curves C~ -* C as described in

Section 3, the func t ion

V 

~~( M )  = t (M ) • (
~~
_ (M

~
)_
~ +

(M
~
))i (l2.a )

where M C C and t(M ) the unit tangent vector 
—

C C C

to CE at M , has a finite limit as c + 0,

and the limit function ~ (M) , M c C , def ined  by
I t

~~(M) = lim ~ ( M ) , ( l 2 . b )
c-~-0

with H -
~~ M as C -

~~ 0 , is continuous at every point

M of C.  Moreover , the func t ion  q’ de f ined  by

0 < c < C ’

i(M ) = 
~~~~~ M , = 0 

(12.c)

is an Holder—continuous function of c on 0 < c < c ’ ,

where c ’ is small enough so that there is an one-to-

one correspondence between points of C
~ 

and points

of C.
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(iv) The boundary condition

A

n~ E~ nXE ’ = — f l -~~~~F , (13)
ls +

where ~~ is the electric field of a specified plane wave or a

di pole source or a combination thereof located off S. (The

condition on the normal component of the magnetic field , i.e.

A A A 
+

n•H = n H  -n~ H (14)
S+ S_ S

need not be specified since it can be derived from (13) by

taking the divergence of it.)

(v)  The density conditions : that the function

~(~ ) = f l (~~ ) X 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r c S, has par tial derivat ives of

the f i r st order on 5, and that the real and imaginary parts of

V the components of as well as those of its first p~ rtials are

H—regular density functions for S (Def. 7)

- - With ~e~ pect to this statement of the open surface problem
V 

we would like to make the following comments~ Fi-r~~~, the con tinu i ty

of i~ and in space and in the approach to S from either

side together with condition (i) imply that V- P and V x H  are

continuous in space and in the approach to S from either side.

Second , condi tion (iii.b) is needed only in proving the uniqueness

of the solution of the open surface problem but not for converting

it into a problem-in integral equations. The same is true about

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~ - V - -
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the existence of the first partials of in condition Cv) .

Indeed , for the conversion part we will only need that K and

(see Def. 5) have real and imaginary parts which are

H—regular density functions for ~~~~. As condition ( v)  stands

exists and is equal to the one given in terms of the

differential operator V since , by de f in i t i on  7 , the first

partials of are HOlder-continuous on S.

The problem described above d i f f e r s  from the corresponding

closed surface problem mainly in the addition of conditions (iii)

Before unh ~rtaking Lh~- main task of this paper , i.e. to convert

this problem to a problem in integral equations and to also show

tha t i t h~ s at most o~. solution , we would like to first discuss

the edge conditio:~s and their physical implications.

D. The edge conditions.

It is well-known that in order to guarantee the uniqueness

of solu tion of the open surface  problem we need one more condition

than what is required for the closed surface problem (Jones , 1964;

Sommerfeld , l964.b). This condition is associated with the elec-

tromagnetic energy enclosed in a finite region of space . If e

and F are electromagnetic fields s a t i s f y i n g  Maxwell ’ s equat ions

V~•V

3e
V 

Vxe = 
~~~~~~~~ 

-

~~

-

~~~ 

, V~~~~h = -
~~

--
~~

--- , (15)

• where CO and stand for the permittivity and permeability 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of free space , respectively, we require that the stored electric 
I 

-

and magnetic energy in a finite region of space devoid of

sources be finite . For a region V of space these energies 
V

are (Sommerfeld , 1964 . a )

C
0 -+ 

1_b f 
V

W = — I e’e dV , W = — 
-~ h~ h dV. (16 )e 2

~~~v 
m

+ 
~~ 1( It  + iW t -

~ 
+

If e = Re (Ee ) , h = Re (He ) ,  wi th E and H depending

on the space variables only , then the time-average electric and

magnetic energies are given by

— 
C~ I -~ ~~ — 

~ o 
I +

W = —

~~

- j E.E dv , Wm = 
~~~~~ 

j H • H  dv , (17)e

respectively. The bar denotes time-averaging over one period ,

while the star denotes the complex conjugate  of the vector it

is attached to (Jones , 1964; MUller , 1969; Stratton , 1941).

In the present case the volume would be a tubular one

surrounding the edge C of S. With respec t to the coordinate

system in troduced in Sec tion B, this volume (call it V
~

) is

def ined by

0 < s’ < L , 0 < p ’ < C , 0 < 
~~~
‘ < 2 T  ( 1 8 )

The finiteness of energy requiremen t can then be written as

( + -*  I -
~~~~~+*

u r n  I E~~~ f-~ dV = 0, lim 11 .11 dV = 0 . (19)
~~~~~~~ c~~~~O v~
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Instead of this requirement , we impose the edge-conditions

r 2 lT  r2Tr

J ~~~~ d~ ’ = 0 ( ~~~t 2~~~~~~U ) , j i~~i~~d ’  = 0 (~~~~ 2 (1~~~~U ) , a > 0
0 0

-~ - where the order conditions are taken to be uniform with respect

to the point ~-1 of C. Clearly, if a pair of fu nctions ~~ and

}~ satisfy the edge conditions , then they also satisfy the

V 

energy conditions.

Although conditions (20) are necessary for proving that the

open surface problem has at most one solution , they are not

sufficient , at least not for the manner in which we approach the

question . Condition (iii.b) of Section C is also needed and this

we will demonstrate later on. In the meanwhile , we will show that

the introduction of such a condition makes sense physically. Let

-*

f(R) be a complex-valued function of R defined and with V

continuous first partials in a bounded domain containing S in

its interior , and let and be a solution pair for the open

surface problem. Let also C
~ 

represent the closed contour on

S which is the intersection of the surface S with the cylinder

in ( 7 )  . By Stokes ’ theorem we have that

f f(~ )t 
. (1~~-i~~)ds ’ = -J f (~~)t~~~~ds ’ - J f ( ~~) t H ~ ds ’ =

C~ C
~

= I n~ V~~(f ~ )dS = I p ’ .~-:t:~ j÷ f’ x~}ds = —f tV f . (PXH )+ikyfp ’ .EJdS ,
J E

C C C (21) 

—•--—-———-V.--— V 1fifla~r — TI  ~
—
~

-‘~
-
~ .

- _L II•tl~~~~~~~V .V -- - - —  — — 
_ - _V
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where —C is transversed in the opposite direction of C

~~
,

V s’ denotes arclength , E
C 

denotes the cylinder in (7), and

n the unit normal to the cylinder pointing toward the interior. V

We can now show that the last integral in (21) vanishes in

the limit as c -
~~ 0. Since E and H are solutions of the

open surface problem they satisfy (20). Using the Cauchy- V

Schwarz inequality ,  we have that

r r  A 
-+ 12 1 A 2I I  fp ’ .E dS I 

< I I fH P ’ EIds =

j 
—

C C

= {i~ J0 I f I I p ’ C{~~
-
~~~

’ . ~~~~~d~I ,ds ,J2

I rL r211 A 
A 2 1 1 rL  r 2 r r  A 1

V < C
2
~~J J fl

2 
1-s p ’~ ~

-
~-r 

d~~’ds ’~ ~J J Ip ’ I
2d~ ’ds ’~

~~ 0 _J t_ 0 0

< E
2
C~~E 

(a l) 
= C

1C
2a

, ( 2 2 )  

V

V 

where C
1 is a constant. Similarly ,

A

V f  . ( p x ~~)dS~ < C C
a

E 
— 2

C

where C2 is a constant. Since a > 0, both of these expre ;sions

go to zero with C. We then have that

f A

V ljm j f(R)t . (H —H~ ) d s ’ 0. (24)
€ 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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But tne integrand in this expression is continuous to the boundary

by the edge condit ion ( i i i. b)  and the assumption on f .  This

a l lows  us to take the limi t before integrating, so that

I f(1~)t . (~i -i~~)ds ’ = 0 ( 2 5 )

V 

I C

In order to in t erpret these last two equations
V t  

V.~— physically we introduce the induced linear current density , K , V 
V

on the sur face  S

A 
-

K(r) = n(r) x (H (r)—H ~~( r ) )  , r ~ S ( 2 6 )

a v~ctor tangent to the surface S. Since ,

t (} j~~~~~~~~~~~~ ) = (Tx n )  . (1~~~~} j )  = ( j
~~ ) = 

~~~~~~~~ ( 2 7 )  V

we have from (24) and (25)
I
;

lim I f (~)T .Kci~’ = 0 , f (R)T~~~ds ’ = 0 .  ( 2 8 )

C~~~O 1C ~~C
4 C

-~~With f ( R)  E 1 , and since - r K  is rtorn~tl t o  C , the second of

(28) says that the current (in unp~ res) entering the surface must

be equal to the current Io~iving it. The first of (28) says

basically the same thing. Phy~iical1y, ho~ ever , no current is :~
entering or leaving the surf-ice . In fact , we should have that

-t - i  = 0 on C. This i n t I - I - n . l t i on  is contained in the second of

(28) but not in the first . To prove it we use the following

theorem (Sobolev, 10 , 4 , p . 113)  .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- V - V  — V V V -~~~~~~ V
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Theorem 4:  If a func t ion g is summable in an open set ~~~~,

and if for any function f which is continuous on ~ 2 the V

equal ity f gdv = 0 holds , then g must satis fy the cond ition

J
Ig Idv = 0, and consequently g is equal to zero almost

everywhere in f~. (W e remark here that a much stronger version

of this theorem can be foun d in Smirnov ( 19 64 , p. 1 4 5 ) ) .

A i-i

Identifying g with T~~K in the second of ( 2 8 )  , we have

that T~ K is equal to zero almost everywhere on C. Since by

( 27 )  and (ii i .b) T • ~~ is con tinuous on C , then ‘K = 0 every-

where on C. Thus the edge conditions of the open surface problem

imply that

0 on C. (29)

The second of (28) cr , equivalently , ( 25) provides us wi th
I~~

another phys ical statement. Using the surf ace divergence

theorem (theorem 3) , we have tha t

f - — —4-

0 = f (R)T Kds I = V
0

( f K ) dS ,
- f l

or ,

~~~ Q 
(f~-)dS = 0 .  ( 3 0 )

S

With the 1 V V
~~~~~O~~~~~~~V V V I f i n i L ~~~r for the electric charge density ,

u, induced on S, i. e.

(31) 

VV - V — -V— - - - --V V—--
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and the fact that V

A A 
-~~

V 0
~
K = —n .V

0
x (H —H~ ) = ikYn -~(E — E ~~) = ic~-a , ( 3 2 )

1

we have from (30) , with f 1, that

f adS = 0 , ( 3 3 )

which says that the electric charge induced on S is equal to

zero .

E. The integro-differential equation and integral

reprasentations.

V
- In this section we convert the open sur f a c e probl em of

Section C into a problem in integral equations. V

Theorem 5: If the pair of vector-functions ~~~ is a solu tion

of the open sur face  problem , then E and i1 are given by

= J [ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
‘ C (R 3

-Th

( 3 4 )

H( R ’ )  =J K ( R ) x V G ( R I R ’ ) d S , R’ C (R3-S) (35)
S

where , 
-

ik~ R—R ’ I - -

G (RIR’) = - 
e R ~ R’
41T I R—R’ I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V - - - V V  ~~~~~~~~~~ ----- - V 
j
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and where the linear current density 1K is de f i ned in (26) and

satisfies the integro—differential equation

A 
-+ —~-i 

-÷ r r 
~~ 

A 
-~ - - 

A 
- ~ 4- 1V —n(r)xE (r) = I I-- i - V~~.K n ( r ) x V G ( R ~ r ) +j k z G ( R ~ r ) n ( r ) ~~p( R )  dS , r C S .) S L1 I V

(37)

Moreove r , on a f a m i l y  of curves C
~~ 

- -  C , the f u n c t i o n

T(M )~~K ( M ) ,  H C C , is ident ical  to the f u n c t i o n  i~ d e f i n e dV C C C

in (l2.a) , and

lim ;(M ) .i
~~~ (M ) = 0 .  ( 3 8 )

- C C
~ V - u

Proof: To show that P is given by ( 34)  we surro und the surface

S by a closed s u r f a c e  S0 which we cons t ruc t  as fo l lows : Let

J ~ and c be two positive real numbers such tha t  0 < ~ < C.

t 
If is the posi tion vector descr ib in g S, we let

s
÷~ 

: + , S
5 

: - -~~~~~ (39)

Moreover , we let

r0
+~~’ , 

~~ 
C C , ‘ = . ( 4 0 )

The su r f ace  S
0 is the closed surfac~- ~orr~ot by these three

intersecting surfaces as shown in Fig u r -- 1.

We apply now Green ’s second identi ty in the volume V
0

bounded by the surface S~~, the sur 1 , 1 I ~~e S
R of a sphere whose 

-V~~----- -V- -V ~~~~~~~~~~~~ --  ~~~— -- 
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radius R even tual ly  recedes to i n f i n i ty ,  and the su r face 5’

of a sphere of radius r and center at R ’  ~ S0. With

- ~U~I R ’ )  = i k V x ( G I ) ,  ( 2 )  (4 1)

where G is given by (36) , and I is the iden t i ty  dyadic , we

V - 
have that V

- V 
I -~ -~ - — - V.~ ~J [7xV-~H(R) .F(RIR ’)_ H (R ).VxyxF (R IR ’)~~d v =

-

V 

V
O

- 
( 

A - - - 
( 3 )  -

-

- = , n . [H(p )xv [’(RIR’)+ -;XH (R) r (RIR’ )]ds ( 4 2 )
J S O +S R +S ’

where the uni t norma l n0 to S
0 

poin ts away f rom V
0 . Since

-4- - 2
& 

both H and F s a t i s fy the equa tion V~~ V~~~(~~~) 
- k (~~~~~) = 0 in

j V0,  the volume in t egral in ( 4 2 )  is zero , wh ile (cf. Asvestas and

Klei n ma n , 1971)

V 

( 2 )  Double bars  over a letter denote a dyadic. All dyadic and

vector identities used in this work can be found in Van Bladel

4 (1964).

(3) Th is iden ti ty  can be ob ta ined by wri ting the dyadic in (4 1 )
in rectangu lar componen ts and apply in g theorem 1. The vec tor to be

V used in this theorem is of the form = > w. From -iuller (1969)

we have tha t if u , w , V - u , and Vxw are continuous in V0,
then

V •  ( u x w )  = w . V x u - u . V - w

These condi tion s are s a t i s f i e d  in ( 4 2 )  

- - - VV V
~~~~~~~

- - -- -~~~~~
-----

~~~
V - - V V . - - - — - -  -~~~~~~~~~~
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- j  u r n  J n . t ~~x v x r + ( v x~~)~~~Tid s  = -1kV’  J~ (~~’ ) .  ( 4 3 )
r-~0 S’

By these last two equations and (8) we have that

-4- —b. z I 
A 

+ = -÷ -4- + —4- = -# —3-

V V 
E ( R’)  = —

~~

- J n Q . [ H ( R ) V/ V V < F ( R I R 1 ) + \ x Fj ( R ) >- r ’ ( R I R I ) } d s  ( 4 4 )  V

V 

i k SO+S
R

We next show that the integral over S
R vanishes in the

limi t as R -
~~ ~~~~. Since ,

‘7 X F i k [ V V G + k 2
Gfl , ( 4 5 )

and

1~~VVG = ( V x ~~) V G - V x ( ~~VG ) ( 4 6 )

then , denoting the integral over S
R by I , we have that

= 
~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 4 7 )

-3-- Employing polar coordinates with center at R’ and wri ting 
V

‘7G = - 
e

11
~~ — 

_
~~}R i dS R2dc? ( 4 8 )

we obtain

V I - 
~~~~~ 

J
S

R

k 
+

~~~~
) d

~~~ + 
~~~ 

(49)

The first of these integrals vanishes in the limit as R - •  --

_ _ _ _ _  _ _ _ _ _ _  - - - - -
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because of (10) , while the second vanishes because of a lemma

of Wilcox (1956) which in ef fect  states that Maxwell ’ s equation 
V

together with the radiation conditions imply that

f I~ I 2 d~ = o 4 ~, R ~~~~. ( 5 0 )
SR I R J

Th us ( 4 4 )  becomes

~ —3- z f A 
—I- 1- - — 4- ~~ ~~ _3

~ = _3
~ _4-

E ( R ’ )  = —
~

- j  n.[H(R)x ’
~
I >V F (R j R ’)+Vxu(R )xr (RIR ’)Jds (51)

k S
O

which by ( 4 5 )  and (4 6 ) can be wr i t t en as

= ~~ 
J50

fo
. G +k2~~~~~~k G Jd5. (52)

In order to cast this expression in the usual Stratton-Chu

form we use the ident i t ies

~~~~~ 
= f lx~~ ( 5 3 )

A 
- 

A 
= 

A A _
~n

0
• [Ex 7x (GI)J = n

0
• [E x ( ’ G x I)] = (n0xE) 

. (VG”-I ) = (n
0
XE)XVG (54)

~~~ 
= (n ~~~ H) ~VV G = — (n0

x~~) V ’ V G  = - V ’  (n
0

Fi~~I G)  =

= V ’ (n
0
.7G~ Ii) V’ [n

0
.V~~(G~ )]-V’( Gn

0
.Vx~~) =

= V ’~~n0.Vx (G}~)J_jkYn 0
.J~yG . (55)

- -

V_- ~~~~~~~~~~~~~~~~~~~~— - --~~~~~~~~~~~~ V -V.-- - V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _

—26—

V 
Eq.  (5 2 ) then becomes

= ~~~~~~~~~ + ( n
0

--~~) x .’G) ~~S +

(5 6 )

The last integral in this expression vanishes by virtue of

Stokes ’ theorem . Letting now 6 -* 0, and usin g the boundary

condi tion (1 3) , we have tha t

A A

= [n0 ~E 7 C + i k Z Gn
0 -~1l + ( n

0
T)  -~~~]dS +

+ 
JS

C

1 ; _
_

~~
+
~~~~~~

1 G _
_

~~
+ Jd5

~ 

(57 )

where S
C 

is that portion of S not contained in The

f irst of these in tegra l s  can be shown to van ish as c ~ 0 by

means of the edge condi t ions ( 11) . Since R ’  / E
~~~~
, G and ‘-G

are cont inuous  func t ions of i~ and , he nce , bounded . Using the

Cauchy—Schwarz inequality as for (22) , we have that

~ 

A V~~ ciV 

n, f-~- CdS < C-, (R’)C , ( 5 8 )
I U — V

C

< C1 (R’)C 1 (5 9 )

and

Gn 0-ii d S < C
2 CR ’) C~~ (In)
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H
so that the first in tegral in (57) is indeed zero in the limit

as C 0. The second integral in (57) can be shown to exist

f as an improper inteeral by condition Cv) of the open surface

i- ’roblem. For = n~ (H _li) is in teqrable since its components

have real and imag inary parts th~ t are H—regular density functions

for  ~~~~. From (32), n ( E -~~~) = (ikY )~~~V0~
K and , because of the

conuitions Cv ) on K , V
0 K ex is ts and its real and imag inary

parts are H-regular density functions for 5, hence integrable.

Letting L

f ( )d S = lim ( )~~s
C - 0 ~SC

we have tha t

= 

~ 
[
~ 

v . ~ ~~~~~~~~~~~~~~~~~~~~~~ R’ C (R 3
-S).

(62)

This completes the proof of (34) . The proof of (35) follows 
V

similar steps and for this reason we omit it.

Equat ion ( 38 ) and the id e n t i f i c a t i o n  of r~ K wi th ~ were

proven in Section D so that it only remains to prove (37) . This

V equation can be obtained either from ( 5 6 )  or ( 6 2 )  . In (56) the

sur face  S0 is a closed su rface , a fact which enables us to

use well—established results regarding the behavior of the

integral as R’ approaches 
~+6 

or S~~ ( c f .  Mu l le r , 1969 ,

Ch. IV) . In (62) the surface is open but this equation involves

only two terms and for this reason it is the equation we will use
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to obtain ( 37)  . The theorems necessary for  the der iva tion are

summarized in Appendix A. From theorem A . 3  we have that the

second part of the integral in (62) is continuous at every

poin t r C S so that

I -~ -* -~- I . -
~- 

,. 
~~ I 

-÷ -÷ --4- -~-

K(R)G(RfR ’)dS = I I
~~(R ) G (R IR

’) d S  = , K(R )G (Rfr)dS ( 6 3 )
s~ ~s_ s

where by S~~(S_ ) we mean -the limit of the integral as R’

approaches ~ from the side S+ (S )  - From theorem A . 4  we have

that  the f i rs t par t of the integra l  in ( 62 ) is conti nuous at

V every point  i~ of S in the approach to it from either side

S
~ 

or the side S and that

=

-S
÷
(S)

V 1 ~~ ~ 
A -~ - 

A V

= + ~ V
0

K ( r ) n ( r )  + J V
0~

K(r)n -

~~~~ 
G(RIr)d S +

— S -

V I - -4- -4- 1 ~~ 
_4- ~4- -.

+ j  V0.R (r)1 0G (RIr)ds + [V
0
.K(R)—

~ 0
.K (r)]C (RIr)dS , ( 6 4 )

S

where the min us si gn corr esponds t o  t h e  appro ach f rom S~ and

the plus  f rom S .  Comb in ing the last  three equations  we ge t

—4- I- -,

—4- —* n ( r ) —‘- -~ 
- Z —p- -* 4- . —~- V-I- —4- _* —4-

EI (r) = 
2 

V
0~~ K ( r )  + - ~~ V 0

.K(R) V G (RIr)+ikZG (RIr)K(R) IdS , rcS ,
- - V ) s - V  -I

V (65)

_ _ _ _ _  ~~~~~-- - - - 
=-—

~~
-- 

~~~~
V— -  - - — - — - V- V V - V . -
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where the f i r s t  part of the integral must be in terpreted in

the sense of ( 64 )  . This last equa tion toge ther  wi th the

boundary condition (13) yield ( 3 7 ) ,  and the proof of Theorem 5

is comple te.

F.  The converse of Theorem 5.

1
Before we s ta te  and prove the converse of Theorem 5 we

in troduce the fo l lowing  def i nition

Definition 8. Let be a vector-function defined on S. Then

—3- -3-K is said to be a su r f ace  f ie ld  on S if n~ K = 0 everywhere

on S.

Theorem 6. Let K be a surface field defined on S and satisfying

the fol lowing conditions

( i )  ~ has par tial deriva tives of the f i rst order on S , and

the real and imaginary parts of the components of K as well

as those of its first partials are H-regular density functions

for S (Def. 7).

(i i ) On a fam ily of curves C + C as described in Section B ,

the function ~p(M ) = r ( M ) .~~( M )  ha s a l imi t  as C -
~ 0 ,

and

u r n  ~ (M ) = 0 .  (66.a)

Moreove r, the func t ion  ~ d e f i n e d  by

~4- (M ) ,  0 < C C ’

= 
, 

(66.u)
0 , c 0  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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is an Holder—continuous function of C on 0 < C < C ’ ,

where C ’ is small enough so that there is an one—to-

one corres ponden ce be tween poin ts of CC and points of C.

( i i i )  For all r S , i~ satisfies the equation
V ~

A -
~ i 

—— I rz A 
-÷ - 

A 
+ -+ —b- 1

— n ( r ) > < E Cr) = I I~~~~V o
.K(P)n (r)xVG (RIr)+ikZG(RIr)n(r))<K(R)jd5 ,

J S L  V

( 6 7 )  L

-

V 
where is the electric f ie ld  in troduced in cond i tion V

(iv) of the open surface problem .

Then the funct ions  ~ and Il def ined by

= J~ [fr 
V

0 

‘
~~~~~~~~~~~~~~~~~~~~~

R R ’  
]dS~~ K ’  C (R 3-S)

( 6 8 )

—3- -÷ 1 —3-- —3- -÷ —3-- -÷- 3H ( R ’ )  = j K(R )XVG(RIR ’)dS , R’  C ( R  — S )  ( 6 9 )
S

where G is defined in (36) , are solut ions of the open su r face

problem .

To facilitate the proof of this theorem we first introduce

the following lemma .

Lemma 1: If the h ypo theses of Theorem 6 ho ld , then

Js o o G ’)lds = 0 , ~~~~
‘ c (R 3-C) .  ( 7 0 )

P r oo l :  For [~‘ c ( R 3 -S) we have , by means of the surface diver-

V gence ~heore m (Theorem 3) and ( 6 6 )  , th a t  
V
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o = J G(
~~t~~’)T~

K(R)ds’ = 
-1

~~~~0~ 
[G(~~l~~

’)
~~
(
~~)1 dS

-4- 3 —Expanding the surface integral we obtain ( 7 0) for  R C (R -S) -

From Theorem A.3 we have that the first part of ttf~ integral  in 
V

V ( 7 0 )  is continuous at e’#ery point  ~ES. The same is true for

t~ c second part  and to prove this we erec t a rectangul~ r coordinate V

system xyz with origin at and the z-axis in the direction

of the normal. We can then write

= 

~~~~~~~~~~~ 
+ K~~(~~)~~~ + K ( ~~)~~~]dS =

V
~~~~~~ r A (  

~~~
(

= x .J K (R)VGdS+Y.J K (R)VGdS+z~~I K
~~

( R ) V Gd S . ( 71 )  
V

S S i~~

Apply ing the resul ts  of Theorem A .4 , with n (~~) = and

K2(~~) = 0 , to this equation we get the con ti nu i ty  property at

r C S.

We now proceed to prove Theorem 5. We first show that (68)

3and (69 ) sa t i s fy  Maxwell ’s eq ua t ions  ( 8) at  all  poi nts R ’ C C R  — S )  :

V V ’ < E (~~~’)  ikZJ V ’
~~~~~[G (R IR ’)K (R ) ]d S  =

S 
V

= ikZ-  K (~~ ) -V G ( R IR ’ ) d S  = i k Z I l ( R ’ )  . (72)

-s

= f v t ~ [~~(R)xVG( RIR ’ ) ) d S  = 
V

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 7 3 )

V.— - - -- —V — - V 
~~~~~~~~~~~~~~~~~~~~~ — - V  V ~~~~~~~~~~~~~~~~~~~~~~~ —V. 

-- -
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~V I

By a standard identity and ( 7 0 )

-: f ~~~
) .V ’V G (

~~~~~I~~~~~
’) d S  = V ’ f  ~~~ i G (~~~~~~~~~~~~)d S  = _ v ’ f  G (

~~~I~~~
’)V

0
.
~~~(~~

) d S ,

S S S

- I so that (73) becomes

I -÷ —~- -~- —
~ 2 —+- -~- —3- —*- —3-- —3--

V ’~~1I(R’) = — J  {V0
.K(R)VG (RIR’)— k G(RIR’)K(R)]dS = ikYE(R’).

S
( 7 5 )

+
We note that in ( 7 4 )  we also used the fac t  tha t , since K is

a sur face  f ie ld , I~~VG = K V
0
G.

The f u n c t i o n s  and are cl ea r ly  infini tely differen—

tiable at every point ~~~~
‘ C (R 3-S) . From ( 6 8 )  and Theorems

Z\ . 3 and A . 4 , i~ is cont in uous to the sur face  S f rom S~ and

S_ . From (69) and Theorem A. 5  the same is true of 11 . ‘loreover ,

f rom ( 7 2 )  and ( 7 5 )  and Theorem A.3 and A.5 , we see that Maxwel l ’ s

V 
- equations hol d on S in the approach to it from and S_ .

We next show the radiation conditions (10)  are satisfied.

A~ymptotica1ly,

-3- ~ e~~~~
’ i eikR ’ A

G ( RIR ’ )  = —~
-
~
- 

~ + 0 —f , V ’ G  = R ’  
— (ik ~~~

R ’ )  ± 0 —
~~

- 
, R’ -*x ,

R ’ ’

( 7 6 )

where

-ikR’ R
Ill = — 

e (77)

Equations (76) art — u n i f o r m l y  v a l i d  for  a l l  K c S and a l l  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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R ’ . ?rom (6 8) we have tha t  V

ikR ’ r -
~

• ~~(R ’ )  = j [-(R ’7 0.K±ik~~~]d S + 0 —~-~-L ( 7 8 )
S R’ j 

V

while  from ( 6 9 )

A ikR ’ ‘ A -

R ’ X i i ( R ’ )  = - I ik-~R ’ x (KxI~ ’) d S  + 0 1 V V.j: ~~~ = V

i k R ’  A A

= — 
~~
—

~
---—— ik~~~~[i ~~— R ’  (R’ •lK) ]dS + 0 —~~

-
~~
- , ( 7 9 )

R s R ’

so that V

= ~~ , Ze~~~ J [_ ~~~
.
~ +ik~~ ’ .~ JdS + 

o [~~~~~
] 

.

( 8 0 )  1

We now note tha t  
¶

L

A

= - ~~~~(e
_ R~~ RJ= -ik~ V ( R ’ R ) = -ik~~~ R ’ , (81) -

~~~

so tha t  ( 80 ) becomes

A A ikR ’
~~( R ’ ) + Z R ’ x l i ( R ’ )  = -R ’ 

~~~~~
-
~~~~
--— f ~~~V 0

.K+K .V- ~~~dS + ~~~~~~~ =

= ~~
, Ze~~~~

’ 
(~~h ) d S  + ~~~~~~~ (82) 

1ikR’ A t

= R’  ~~~~~~~~~~~~~~~~ 4rr Kds + 0 —~~
-
~~

- = O~~—~-~~

-- -- - —-- S - 
-
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where , above , we used the sur face  d ivergence theorem , eq. (66) ,

and the fact that R’”7~ = K V
0
~~ . Similarly,

i k R ’  AV —3-- -)- -3- —3-- e IH ( R ’ ) — Y R ’ x E ( R ’ )  = — 

R’ i k : K ~:R ’ d S  —

-‘S

i kR’  A
_

~~~~~~~~~~
, f i k ~~R ’ X~~d s ÷ o ~~~~~ = 0 _ ~L~- . ( 8 3 )

~~
S R ’  R’

We note that the f i r s t  integral  in ( 82 ) is the f irst term in an

asymptot ic  expans ion  of ( 7 0 )  . Indeed , the radiation conditions

can be obtained by first using (70) and then expanding

asymptotically. This we do in Appendix B.

We next prove that the edge conditions are satisfied. To

thi s end we let 
V

H(~~I~~’ )  = G (
~~~I~~~’ )  + _ _ _ _  - 

~~~~[ik ~
IT 

(8 4 )

We ca n then wr ite in place of ( 68)

= - 

~~~~ 
j  ~~ V

0
.
~~~~ ) V  ‘ + ikz 

)]ds +
R — R ’ J  J R — R ’ I

( 8 5 )

+ 
J 5 [h1( V

0 ~ ) I R ’ ) ~~~ 1 )~~~~~Jd5 , K ’  C (R 3-S),

while  in place of (69)

1 1 - ÷ ~~~~~ 1 I - ~~~ -~ -~ - 3 —1 1 ( R t )  — -
~
-——— 1< ( R )  x7 

- 

- 
d~ -i K ( R )  ~ V ii CR 1 R ’ ) CIS , P’  t C R — S )

s - h~~~~R ’
(86) 

-
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The second in tegral  in each of these two express ions  can be

estimated immediately. We first note that

H (~~~R ’ )  = 1 [i ~~e
l 

= 
~ n~ 0

V V H (~~jj~’ )  = ~~
— (VJ ~~—~~’ J )  

n~ 0 

(n+i (1K R-R ’ )

V so that

2 k~ R-R’ I
ke i 7H ( R I ~~ s )  (87 )

Since we arc verify ing the ed ge condi tions th~ point ~~~
‘ is a

point near the boundary C of S while K is a point of S.

Since S is bounded , we can draw a sphere of f i n i te dia meter

D that contains ~ and R ’ . Then K-K ’ < D , and

V kD 2 k D
H ( R ~ R ’ )  < , IV H (R j R ’ )  < . ( 8 8 )

W ith these inequal i t ies  we have tha t

k D r
< 

Zko j ( J V
0

. K ( I
~~)~~~~+ k j 1~~~( R ) ~~~~~)dS , ( 8 9 )

V S

2 kDI -~ - —~ -
~ I -- —p- — -  -- - k e —4- -~-

j K ( R ) x V l l ( R J R ’ ) d S  < K(R) Hh1~~RjR I ) IdS K k(R) IdS.
I ‘-S I s

( 90)

- ~~~~~~~~~ —V— -—-— V
~ - - VV. —— V ~~~~~~ 

_ V V  V 
~~~~~~~~~~~~~~~~~~ —— 

V. V - —
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)

Since I i ~I and v0
i~ J are integrable by assumption , we see

that the integrals involving H ( R ~ R ’ )  in ( 8 5 )  and ( 8 6 )  are

bounded , so that in verify ing (11) we need concern ourselves

V 

-V only with the remaining integrals in these two equations . That

in tegrals of this type do satisf y the conditions in (11) is the

sub ject of Part  I of th is  work .

To show that the edge condition (iii.b) is also satisfied

we use (69) and Theorem A.5 to get that at every point ~ of

S

= -f l(~~ ) x ~~~( r ) . (91)

On any of the cu rves C
~~

i

A

t (~~). (~~ (~ )~~~~(~ ) )  = -K (~~ ) . t ( r )x n ( r )  = T (r) ~~~~~ ( 9 2 )

t By condition ( i i )  in the present  theorem we see tha t  the l imi t  
V

as C - 0 ex ists and is equal to zero , so t h a t  the edge condi tion V

V 
(iii.b) is indeed satisfied .

The bounda ry condi tion (13 ) can be shown to be sati s f i ed

by first evaluating (68) at a point r of S. Using (?~.l3) and 
V

(A.l4) we have that

A 
-+ 1 r z •—~- ~~ - -+ .

~~ 
A VV. —~- 1

f lx E~~~~ = n x E~ = j i 7 . K ( R ) n ( r ) x \ G (R~r)+ikZG (Rlr)n (r)~~K(P)jdS
+ S_ SL

Combining this with (67) we obtain (13) . 

,~~~---
V
~~~~~~~~

-VV -- —-- — — -  — - V-- - -- -V - -  ~~~~~ -~~~~~~~~
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Finally, from (91)  we have tha t

x ~~~~~~~~~~~ = K ( r ) ,  ~ C S ( 9 4 )

V so tn it , w i t h  cond i t ion  Ci) above , the density conditions Cv )

of the open s u r f a c e  problem are s a t i s f i e d .  This completes the

proo f of Theorem 6 and we can now state the equivalence theorem . I V -

Theorem 7: The pair of vector—functions {E,~~
} is a solu tion

of the open surface problem if , and only  if , L’ ir given by

( 6 8 )  and ~ by ( 69 ) ,  where K s a t i s f i e s  condi t ions  (i)-(iii)

of Theorem 6.

G. The uniqueness of the solution of the qpen surface problem

In this section we prove tha t the open sur tace  prob lem has

at mos t one solut ion . To this  end we assume tha t  there  exist

two solut ion pairs  
~~~~~~~~ 

and ~~2
,H2

} and we form their

d i f f e r e n c e

E = E1-E2, H = H
1

-H
2 - ( 9 5 )

The pair  {E ,~~} is a solution of the open surface problem with 
V

the boundary condi t ion  (13 ) replaced by

4- 

n ’~~ n-W E = 0. (96)

V S+ s_ 
V

- - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - V --- - V
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We now apply the divergence theorem to the function E xH in

the region bounded by the sur face  S
0 

def ined  through (3 9 ) and

( 4 0 )  (see also Fi gure 1) and the sur face  SR of a sphere whose

radius R eventually recedes to infinity . Calling this region 
V V

V0 we have tha t

J V (~~*~~~)dV = J ~~~~
. (~~~~~)~~5 (97)

V0 SO+SR
k

-
V - The surface in tegra l s  ove r S~~ and S_~ vanish in the l imit

as ó - 0 because of ( 9 6 )  . The surface integral over

vanishes in the limi t as C - 0 as shown in Appendix C. Thus

the in tegral over S0 vanishes in the l imi t  as S0 collapses to 
V

S. For the integral over SR we use the radiation conditions

( 10) to rewri te  the in tegrand as

(~~~* x~~~) = 
~~~*

(

~~~~~~~~~~

) = ~~ * (~~~x~~~) = y~~ * + o [~~J~~~ = + o [~~~
]
~

( 9 8 )
I, ’

4 since E = 0(1/B)  (Wilcox , 1956) .  Since 
V

—9- —9- -3- * 9- * 
—p- —9- -4*  -÷ -+- *v.(r XH) = II .V xE — E .VX IJ = —ikZH-H +ikYE-E ,

k

we have for (97)

I -~- - * -4- 4 - *  I -~

ikj (YE~~J —Z H•H )dV = YJ E • E  dS + 0 ( 1 ) ,  R ( 9 9 )
V

where V = u r n  u r n  V0 . Since the left-hand side of this
C 0 ó -~0 

— V V-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -- --~~~



..——----V-- ----VV.V--- -—- - ---- - V V VV, --------— -
~
---- - : — -

~~~~~~~~~ 
- V --V--. ’--- V. -- — - -

-

-V 
- — 3 9 —

expression is purely imaginary , we have tha t  
-

I V  I ~~~~~~-- *u r n  
J 

E E  dS = 0.  ( 100)
R °- SR

V For points not on 5, E sat i s f i es the vector wave
~~ 2—

equation VxV xE-k E = 0. From the second of (8) , definition

( 2 ) ,  and Stokes ’ theorem , we have that V~ E = 0 so tha t

V 2
~~+k 2

~ = 0 - (101)

-

~ Eqs . (100) and (101) imply that  outside a sphere of radius R

enclosing 5 , the electr ic f ie ld  vanishes iden t ica l ly .  This

is due to the fol lowing resul t  by F. Rellich (1’liiller, 1959).

Theorem 9:  If V (~~) is a solut ion of the Helrnholtz equation

V
2V+k 2V 0 , Rek > 0

-
V 

for  R = IR~ 
> C , and if
—

I — 2  1 —
V J V ( R )  dJ = 0 —~~- 

, R -~
R

V then V ( I ~) vanishes identically in I~j > C

Thus K and i 4-i vanish identically exterior to the sphere.

Between the sphere and 5, they also vanish bring analytic

solutions of (101)

it ~
--5- “— -- 5 - ----
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We have then shown that and H
2 for all

~Ioints K / S . Since these f i e lds  are continuous to the

surface S from 5
~ 

and 5 , these re l a t i ons  hold also

for  points  E~ of S . We can thus  state the fo l lowing theorem :

Theorem 8: The open s u r f a c e  problem has at most one solution .

H .  Concluding  remarks.

V The main results of this work are the equivalence and

uni queness theorems ( Theorems 7 and 8, r e s p e c t i v e l y . )  The

equivalence theorem is an immediate consequence of Theorem 5 and

6, while  the proof of the uni queness theorem rests  heav i ly upon

the results  of Appendix C. In proving Theorems 5 and 6 we note 
V

tha t condi tion ( i i i . b )  in the sta tement of the open sur face  problem

4 ( S ect ion C) was not needed at a l l .  What was rea l ly  needed was the

stat-T-ment in (24) which is a direct consequence of (11). The

V~~~t V i t- m e n t  in (29), which follows from ( 2 4 ) ,  ( 2 5 ) ,  and condi t ion

(iii .b) , is sufficient for the proofs but not necessary . Moreover,

in d e r i v i n g  it , we only needed tha t the func t ion  in (l 2 .c)  be

continuous but not HOlder-continuous . The same is true regarding

the existence of the first partials of 1< in condition (v) ,

i . e .  in prov ing Theor ems 5 and 6 we only neeclecl the con dition

4 that the surface divergence of ~ exis t s  and that its real and

imaginary p-:irts are H—regular density functions for S.

The “ excess ” condi t ions  then were neces sary on ly in proving

the un i queness theorem , and specifically in showing that th e
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integral in (C.l), Appendix C, vanishes with é. The question

that immediately arises here is whether we can employ the 
V

divergence theorem and wr ite

I A -4* + I -9- * I ~ ~ * 
-)- -3-*

n’(E XH)dS = -J V ( E  x I-fl dV = lkJ (ZH~ H -YE - E )dV ,
v v

C C C

where V
C 

is the reg ion enclosed by 
~~~ 

The last integral

here would then vanish with C because of ( 1 1) .  Because V

includes the edge C , where the f u n c t i o n s  are not def ined  on

it , we could not answer this question for  sure , and for this

reason we followed the longer proof of Appendix C , and in the

process we had to impose the additional conditions. V

Final ly , in the las t steps of the proof of Appendix C

(eqs. (C.l4)—(C.2l)), we note that  condition ( 1 .2 )  on the open

su r face  plays an indispensible  role , which once more raises

the question of how fundamental this condition is for prob~ ems

of scattering by open surfaces.

- - V

- - - — ---V -V-V -V
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Figure 1. A Cross-Section of the Surfaces S and S~ 
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Appendix A. The behavior of certain integrals.

In this appendix we discuss the continuity properties

of in tegra ls  of the type

-* 
f h (~~) - I — iU(R ’ )  = dS and V ( R ’ )  = j g (R)V dS ,
S I R R ’ l S I R R ’ I

where the funct ion  h is a regular densi ty func tion (Par t  I ,

V D e f .  8) for 5, while g is an H-regular density function

(Def. 7) for S. It is clear that U and are infinitely

differentiable functions at all points K ’ of space which  do

not belong to S. The only other points of interest are those

points r which belong to S (but not to its boundary C) . The

V 

proofs of the continuity properties of U and V at such points

closely follow those for the same type of integrals over closed

surfaces. For this reason we will present here only the results

and will refer the reader to Muller (1969) for the proofs.

Theorem A.l: If h is a regular density function for 5, then

the function

U ( R ’ ) = J ~ - dS , (A.l)
S R-R ’I

is continuous at all points r C S.

We outline part of the proof of this theorem to point out

how it differs from th~ one for closed surfaces. Let r C S.
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Since S is a regular  open surface , we can erect a rectangular
-4

coordinate system with origin at r and the z-axis along the

normal n (~~) to S at ~~~~. Portion of S can be described in

terms of this coordinate system in the manner of (1.1). Let

d be a positive number such that  the sphere ~~~~
‘ -

~~~~~ < d , and

with  center  at ~~~~
‘
, contains only that part of S that is

described as in ( 1 .1) and , if  necessary , we restrict d so that

no poin ts of the boundary C are contained in the sphere. We

deno te this  portion of S by S
d (~~

) and let

-7- -4I h ( R )  I h ( R )  -7-U ( R ’ )  = j 
- 

dS + 
J 

— cIS = U
1

( R ’ ) + U
2
(R ’).

S s~~Cr) IR R’~ S
~~

( r )  IR R ’ I
( A . 2 )

We note th at U1 exists  as an improper integral  as fa r  as the

integration in the neighborhood of the boundary C is concerned

V because of the properties of h. As for the singularity at r ,

Muller (1969 , lemma 66 ) has shown that  U1(~~’)  = 0 ( d ) . Thus U1
exists  as an improper in tegra l  if ~~~~

‘ C S . For 
~

‘ -r~ 
< d/2 and

$ 
—3-- V -V

l B - r i  > d , we have that

1 1 l~ ’-~ 
-9-

—  — < -
~~
—— R’ —r~ , (A .  

~~
‘

-
~~~~

‘ i  l~~~~~
-

~~~~~l 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
d 2

so that

— - 2 -~~~ -~~~~I
U~ ( B ’ )  — U 1 ( r )  < —

~~
- R ’  —r J h ( P )  -

- d S-Sd (:)

—--- -—5--V - - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - -  - -  
- V.
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This last integral exists by virtue of the absolute integrabil i ty

of h.  Thus the continuity of U1 at has been proven. The

proo f for the continuity of U2 is given in Muller ( 1969 , lemma

69) . Indeed , the proofs in Muller and the ones required here

d i f f e r  mostly with respect to the integral over S-Sd (r). In

I ~r the integrand is continuous, and hence bounded , while

here it could become unbounded near the boundary C but it is

still integrable.

Lemma A. l :  The funct ion

-,. -
~ 1 1W(R’) = dS (A.5)

iS I R—R’ I

is continuous at every point ~ c S in the approach to it from

either the side S~ or the side S_ . Moreover ,

J V dS = 21Tn (~~) + J n dS + J V 0
S I R—R~ 

S j R — r J  S J R—r J+ (A.6)

f V dS = -2,Tn (~~) + J n dS + J V
0 

~~~~~~~~~~~

S I R— R ’I S S ~R— r j

t (A.7)

where by S~~(S _ ) we mean the limi t of the integral as

approaches ~ from the side S÷ (S _ ) ,  and where V 0 denotes

the surface gradient , i . e .

V = V 0 + n f -  . (A.8)

- - _ _  _ _ _ _ _ _  _ _  -.-.. — -~~~- - - ~~~~~~~~~~~~~
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Proof: Let ~ be a regular open surface having the same boundary

• C as ~ but no other points in common and such that f Li ~
(which is a smooth closed surface) has an exterior normal which

coincides with that on ~ at their common points. According to

MUller (1969, Lemma 70), lemma A. 1 is true for the closed surf ace

T U S  and , hence , for S.

Remark: In lemma 70 of Muller it is also proven that the last

integral in (A.6) is continuous at all points j t  c (R3-C).

Following Muller (1969 , Theorems 41 and 42) we now have

the following result

Theorem A .2: The function

-
~~~~~

-
~ I -

~~ 1V(R’) = g(R)V dS , (A.9)
I R—R ’ I

where g is an H—regular density function for the surface 5,

is continuous at every point it e S in the approach to it from

• either the side S~ or the side S~~. Moreover ,

J g(~~)V dS = ±2irg (it)n(it) + J g(it)n 1 dS +
S÷(Sj I R—R ’I S fR— r i

+ J g(it)V~ ~ dS + f [g(~~)-g (it)]V 
1 dS , (A.10)

S I R—r i S jR—r f

where the plus sign corresponds to the approach from S.f , and

the minus from S .

i f



!~
‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~
-—-- -~~~~~~~~~~~~~~~~ -..- --

—49—

Moreover , if we let

H ( ~~I~~’ ) = G (~~I~~’) + = - 

~_ [ik + ~~~~
2

j~~_~~u I+ . . . } ,  (A.l1)
4 1 r 1 R — R ’ J

then, according to Muller (1969, lemmas 73 and 74), the functions

f h(~ )H(~~jit)dS and J g(~ )VH (~~fit)dSH
are continuous at al l  points of S, so that together with

Theorems A.l and A .2 we have the following results.

Theorem A .3: If h is a regular density function for the surface

S, then the func tion

u(~~’) = I h(~~)G(~~f~~’)dS (A.12)

is continuous at every point it of S.

Theorem A.4: If g is an H-regular density function for the

surface ~~~~, then the function
r•,.

= (A.13)

is continuous at every point it of S in the approach to it f rom

ei ther the si de S~ or the side S~ . Moreover ,

4



!

— 5 0—

f g(~~)VG (~~~~~)dS = ~ g(it)n(it) +
S
÷
(Sj

I + ÷ ÷ 1 ÷ + ÷
+ g ( r ) n  ~~

— G(Rfr)dS + J g(r)V~G(R~r)dS +
on is V

+ J [g(~ )—g(it)]VG (~~jit)dS, (A.14)
S

where the minus si gn corresponds to the approach from S~ , and

the plus from S .

Finally we examine functions of the type

f ~~(~~) x V G (~~J~~ ’) d S ,
I S

where the vector—function has components which are H-regular

density functions for ~~~. To this end , and wi th ~ 5, we

wri te

J ~~(~~) x ~ ÷
l
÷ dS = J [~~(~~)—~~(it)]xV ~ — dS4(it)xJ 

1

S I R—R’ S I R—R’ I S R—~~’ (A .15)

The fi rs t integral is continuous at all points ~~~
‘ e (R~—C) and

4 the proof is as in Theorem 41 in Muller (1969). For the second

integral we employ Lemma A .1 so that

f ~ (~~)xV 
1 dS = J [~~(~~)_~~(it)]XV 

1 dS±2i~~(it)xn(it) +
St(S) IR—~ ’ I  S I R — r i

+ ~( )xJ n (~) ~~~ 

dS + ~( ) x f V 0 dS . (A.16)

~ 

•--~~~~~~~~-~~~~~~~ --. - 
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Using the argument we employed for Theorems A .3 and A.4, we have

Theorem A.5: If the vector-function ~ has components which

7 are H—regular density functions for 5 , then the function

= I ~ (~~)xVG (~~I~~’)dS
I S

I
-~•

is continuous at every point r c S in the approach to it from

either the side S~ or the side S .  Moreover ,

I -
~ ÷ ÷ 

• 

1 “ ÷ ÷ ÷
g(R)xVG (R

~
R1)dS = ±.~~

. n ( r ) x g ( r )  +
‘S (S )

+ — (A.17)

+ J ~ (it) xV 0 ÷
1
÷ dS + 

J 
[(~~)—~~(it)]xV ÷

1
÷ ds,

S I R—r I S I R-r i

where the plus si gn corr esponds to the approach from S~ , and

the minus from S .

-.- —— ————--•- ——•-•—-•- -- -—-- •-•
~
—— •- —-- - •--•—-- —--——--—-——-—- -~~.• _

~ • •~ _-•~~.• • •__ - _• _ •_ —__~•— __••.—.—•__--• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•
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Appendix B. An alternate derivation of the radiation conditions.

In this appendix we prove in a different way than in Section

F that (68) and (69) satisfy the radiation conditions. For

÷ ~~~~, we wri te

G(~~I~~
’) = g(~ l~~’)+0 

—
~~

-
~~~ 

, V ’G(~ I~~’) ikg(R~~ ’)R ’ +0 —~-~ , (B.l)

where 
÷ik(R’—R t R)

= — 4~~~~1 (B.2)

and where (B.l ) are uniformly valid for all c S and all R ’ .

For (69) we then have that

= 
e1~~~

’ 
~ + o[~~] 

, R’ ÷ (B.3)

with

= - ~~ (B.4)

For (68) we have , using (74),

= - fr J5 ’v~~~~~~~~~ JG (~~I~~’)~~(~~)dS. (B.5)

But, for R’ •

V’V’G(~~I~~’) = ~~~~~~~~~~~~~~~~~~~~ = _k2g(~~I~~~~RIR~+0[_~~}, 
(B.6)

_ _ _ _ _ _ _ _  
_ _  _ _
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so that

= ikZ 
J~~

’
~~~

’
~~~~~~~~ 

J g ~ds+o[_i~.]

= ikZR~XJ [~~(~ )xRt]gdS+O [_A 2.)

ikR ’ 
~
. 

~

= —z e 
R’ 

R ’ xA+0 I—_ ~. , R’ ÷ ~~~. (B.7)

From (B.3 ) and (B.7) the radiation conditions (10) follow

immediately.

I

~~~--•-—~~~~-~~~—~ ____
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Appendix C. The estimation of an integral.

In this appendix we will estimate the int~egral

J fl.(~ *x~ )dS

with defined in (40), which appears’ in Section G. To this

end we Ohoose a point M0 of C and with it--as origin we erect

a rectangular coordinate system with t~e x-axis in the direction

of the tangent vector to C at M0, and the z—axis- in the

direction of the normal to ~ at M. The y-axis then lies on

‘~the plane tangent to ~ at M and is directed toward ~~~. On

the yz—plane we erect~a polar coordinate system (p’,~~’) as

described in Section B. The angle 4~ 
is measured counter-

clockwise from the positive y—axis. On this plane we draw the--:

circle p ’ = c  > 0 and we estimate the integi~and of~;(C.l) at

points of this circle except at the paint which beLongs to the

surface.

A

Since the unit normal n is pointed toward M , we have that

A A A A 
• ÷* ~~n•(E xH) = —p ’~~(E xli) = —(y cos- •‘+z sin $‘).(E xli) =

= — cos ,*  (~~*x~~) ~~~~ •~(~*xi~)z =

= -cos •I(Ez
*flx

_E
x
*Hz)

_sin 4~~(Ex
*Hy

_E
y
*Hx) =

* * *= (cos •‘H~
—sin $‘H )+H

~
(sin $‘E —cos • ‘E

Z 
) (C.2)
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As mentioned above, the integral in (C.l) appears in Section G

where the functions and are assumed to be solutions of

the open surface problem . Then, by the equivalence theorem 7 ,

and are given by (68) and ( 6 9 ) ,  respectively . These

expressions appear rewritten in (85) and (86 )  in a way so as

to isolate the singularity of G. As pointed out in the disucssion

there , in examining the behavior of and near the edge

we need only cosider the first integrals in (85) and (86). Thus,

with ~~~
‘ = (p ’ ,4,’ ) ,  we have

= - 
~~~~~~ 

f [~-~ 
V~~.i~~~ ) V  ÷

~~~ 

+ 

~~~~
÷ ~~~~)JdS + 0(1) (C.3)

= — 
~~

__ J ~ (~~)xV ÷
1
÷ dS + 0(1). (C.4)

S I R—R’ I

We will estimate (C.2) by using these last two expressions. We

note that the densities appearing in them are H-regular density

functions for ~ by condition (i) in Theorem 6 so that we can

use the results in Part I. Though ~ and v 0 .i~ are complex-valued

~
. 7 we will treat them as real—valued , the extension to complex—

values being obvious. From Theorem 1, Part I, we have that

.1
E

~~
(
~~
’) 0(1), p ’ -‘- 0. (C.5)

We will now prove that the same is true for H
~
. From (C.4) and

with respect to the coordinate system above, we write

S
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= — ~~~~~ 

~~~~~ 

÷

~~~~ 

— K ( ~~) f— 1
]dS + 0 (1)

= ~~ Js~~y~~
’) (z_z ’)_K

~~
(
~~
) (y-y ’)] + 0(1). (C.6)

We note that the integral here is a combination of the integrals

appearing in (1.43) and (1.74) and will be treated in the same

way up to a certain point. As remarked at the beginning of

Section D, Part I, the integration over S can be split into

two parts one over S (A) and one over S-S(A) , where S (A) is

that neighborhood of S about M0 whose projection on the

xy—plane is the region A defined in (1.12). The integral

over S-S(A) is continuous in a neighborhood of M0, and its

limit as p ’ ÷ 0 is equal to the analogous integral obtained

when is replaced by ~~~~. The integral over S(A) can be

written as

1 ÷ ÷ dS[K (R) (y—y ’)—K (R) (z—z ’)] ÷ ÷ 3 =1 S(A) 
Z 

I R— R ’I

K~~x~y)(y_y ’)sec i~(x,y)
= 

I~-~’ I~ 
dxdy -

r K ( x ,y) (y—y ’)sec ~ (x,y)
• 

•÷ 3 dxdy I 1
_ 1 2 ,  ( C . 7 )

IR—R ’f

where i
~ 

is defined in (1.25) and is the angle the z—axis makes 
;

with the normal to the surface at (x ,y) .

__________________________ 

_-•_-_ _ •_
~
j 
~
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For I
~ 

we wr ite

I~ = J [K~~(x,y)sec ~ (x,y)—K~~(0,y)sec iP(0 ,y)] ÷~ ÷~~~3 dxdy +
A I R—R’ f

+ lA Z Y ~ (0,y) (y_y ’
)[1~~~~, 

~ 

- 
~~~~~~~ +

+ ~ (0,y) dxdy , (C.8)

where

R =A J~~+(y_y u ) 2+(F(0 y)_z~~)
2 

. (C.9)

The second integral above has been discussed in Part I, eqs.

(I.32)-(I.36), and has been found to be bounded. For the first

integral , call it I3~ we write

13 
[ EK~~(x,y)_K~~(O,y)]sec ~ (x,y) ÷~

‘

~~~

‘

~~~ 
dxdy +

• IA I R—R’ I

+ J [sec ~(x,y)-sec ~
(0 ,y))K

~~
(O iy) ÷~~~~~3 dxdy . (C.lO)

A IR R ’I

The second integral here can be shown to be bounded by treating

it in the same way as the one appearing in (1.24). For the

f i r s t integra l we use the mean value theorem to wri te

aK (x,y)
K
~~
(x,y)_K2 (O ,y ) = x , 0 ~ x ~ x1. (C.1l)

x=xl

— a —— ____________ A
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• Since 
~
K
~
/ax is an H-regular density function for S, the

integral reduces to one as in (1.29) which has been shown to

be bounded.

For 12 we write

12 = J A Y ~ (x~Y)_K~~(0~Y)sec ~~(O ,y)] dxdy +

+ 
1A~~~~~

’
~ 

~ (01Y) (z_z t){~~~
1

3 
- 

~1dxaY +

÷ ~ (0,y) 
F , ( 0 ,~~ dxdy +

+ J K~~(O~~~ sec ~ (0,y) 
F(0,y)-z’ dxdy . (C.l2)

The first two integrals in this expression can be treated as the

corresponding ones for Il• The third integral is of the same

type as the one appearing in (1.76) and is bounded . We can then

write

I
l
_1

2 
= 

1A 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + 0(1),

• p ’-’- 0. (C.13)

In order to estimate this integral we will first rewrite it slightly
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differently. We note that K
~ 

and K~ are evaluated at

points of S which also belong to the yz-plane , i.e. on the

curve z = F(0,y). As explained in Part I, after eq. (1.2),

the normal to the surface at such points and the normal to the

curve coincide because of condition (1.2). This normal is given by

—F (0,y)y+z
H n =  

_ _ _ _ _ _ _ _  
. (C.14)

/l+Fy
2 (0~Y)

The unit tangent vector to the curve is

A y+F (0,y);
________ , (C.l5)

/l+Fy
2(O tY)

so that Txn x. Since the current density i~ is a surface field ,

it can be written as

K(0,y) = K
T
(O,y)T+K

x
(O,y)x , (C.l6)

so that

KT(O ,y) F (O ly)K~~(O~y)
K (0,y) = 

___________ 
, K (0,y) = 

___________ 
, (C.17)

/ 2 Z / 2/l+F~ (0 ,y ) /l+Fy (0,y)

and , since sec ~ (O ,y) = /1+Fy
2(o,y) we have for (C.l3)

KT(O,y)11 12 = [F (0 ,y)(y—y ’)— (F(0,y)—z ’)J 3 dxdy+0(l), p ’ ÷ 0
R

We now employ the coordinates (s,p) and use the resul ts for



_____________________________________ 
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.

the integrals in (1.45) and (1.78) to get

rb KT (O ,p) ( l — K p )
1
1

12 = 2! 2 2 [F (0,p) (p—y ’)—(F(0 ,p)—z ’)]dp+0(l),

~O (p—y ’) + ( F ( 0 , p ) — z ’ )  p

(C.19)

where K = K(O~~, K being the curvature of the projection of

the boundary C on the xy-plane defined in (1.11). With

u = p + i(F(0 ,p ), w = y’+iz ’ = p ’ (cos ~‘+i sin q ’) (C.20)

we can write

• KT(O ,p) (l-Kp)
Il

_1
2 = 21mJ du + 0(1) (C.21)

where C1 is the curve whose equation is z = F(0,p),

0 < p < b. Since KT is Holder-continuous on C1, including

the end—points , and since KT(O,O) = 0, we have that the integral

is a bounded function of w tending to a definite limit as w

approaches the end-point (0,0) along any path (Muskhelishvili ,

:~ 1953) . From (C.2l), (C.7) , and (C.6) we have that

= 0(1), p ’ -
~ 0, (C.22)

• so that (C.2) becomes

~
fl. ~~~ I ~ Ily l+ I 1~ l+ y I+I E z I) ~ A ( I~ I÷ I~ I ) ,  p ’ ÷ 0, (C.23) •

• where A is a positive real number.
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From the Cauchy—Schwarz inequality and (C.23) , we have for

(C.1)

II fl.(~ *x~ )d5~ < [l~ In .(~
*x~ IdS) =

= 
[j :J:~~I~~~~~

*x
~~I 6 {l :;t .~~~,]d~ ,ds t J 2 <

I r L r 2 i r  A 2 ) 1, L , 2 7 T  ,.. )
< c ~{ J J l— cp ’ •~~ -~- d4 ’ds ’}- 

~
j J ~~~~~~~~~~~~~ <

~~0 0  J ~~0 0  J

A~c~ J~ 10 C 2+ 2)d~ tds~ , (C.24)

where A’ is a positive real number. Combining this result

with (11) , we get

A
÷ a

I n~~(E xH)dS = 0 ( c  ) ,  C ÷ 0. (C.25)

C
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